Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
基本信息
- 批准号:10678900
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgeAreaAwardBasic ScienceBehaviorBehavioralBiomechanicsBiomedical TechnologyCaringClinicalClinical ResearchDataDevelopmentDevicesDiagnosisDiagnosticEarly DiagnosisEquilibriumFeedbackFunctional disorderGaitGoalsHumanImpairmentIndividualKnowledgeLaboratoriesLeadLearningLocomotionMeasurementMeasuresMechanicsMedicalMethodologyMethodsMissionModelingMotionMotorMultiple SclerosisMuscleMusculoskeletal DiseasesNational Institute of Biomedical Imaging and BioengineeringNeurodegenerative DisordersNeurologicNeuromechanicsParkinson DiseaseParticipantPathologyPerformancePeripheralPilot ProjectsPublic HealthQuality of lifeReactionRehabilitation deviceRehabilitation therapyReportingResearchResearch PersonnelResistanceRoboticsSafetyScientific Advances and AccomplishmentsSeriesShoesSignal TransductionSpecific qualifier valueStrokeSurveysSystemTestingTimeTrainingUnited States National Institutes of HealthValidity and ReliabilityWalkingWeight-Bearing stateWorkage relatedbehavior changeclinical practicedesigndisabilitydynamic systemequilibration disorderevidence baseexperimental analysisfallsfootgait rehabilitationimprovedinnovationinsightinventionkinematicslight weightmotor behaviormotor learningneuralneuroadaptationneuroregulationnew technologynormal agingnovelportabilitypreventive interventionrecruitrehabilitation paradigmresponserobotic devicesensortooltransmission processtreadmillusabilitywearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Locomotor and balance dysfunction, which have a pernicious effect on independence and quality of life, are
caused by of a broad range of neural and musculoskeletal disorders as well as normal aging. While existing
treatment methods can counter some dysfunctions, some pathologies are persistent, such as weight-bearing
asymmetry and reduced adaptability. These pathologies are strongly defined by the dynamics of the physical
interaction between the feet and the ground. Thus, there is a critical need for novel tools to study, and ultimately
assist or re-train, how humans manage their physical interaction with the ground. The objective of the proposed
research is to enable new research into motor learning and human adaptation and provide an accessible,
effective vehicle for gait and balance rehabilitation through the development of portable robotic footwear which
can modify stiffness at the foot-ground interface in real-time. The significant contributions of this work include: 1)
creating the technical capability to change foot-ground interaction dynamics in both real-world and laboratory
settings, 2) enabling new methods of studying, assisting, and re-training human gait and balace, 3) significantly
advancing scientific knowledge by quantifying human adaptation to long-term changes in foot-ground interaction
dynamics, an understudied area of research, and 4) improving clinical practice by providing a portable tool to
make new treatments, preventative interventions, and early diagnoses widely accessible. The proposed research
is innovative because it will employ a transdisciplinary approach, applying concepts from neuromotor control,
biomechanics, and robotics, to develop a novel robotic device for research, assistance, and rehabilitation. This
proposal addresses the following specific aims:
Aim 1: Design, build and evaluate portable, robotic footwear that can actively modulate foot-ground
stiffness and measure the ground reaction forces of each foot independently.
We will design, fabricate, and validate robotic footwear with an active mechanism to modulate foot-ground
interface stiffness in real-time. The stiffness control system and onboard sensors will be rigorously evaluated for
validity and reliability with bench testing along with a pilot study with healthy participants performing whole-body
balance and walking tasks while wearing the device. Human testing will also evaluate the perceived safety,
comfort, and overall usability of the system.
Aim 2: Explore the effect of asymmetrically reducing foot-ground stiffness with the robotic footwear on
human motor behavior during standing and walking.
An additional pilot study will be conducted with healthy participants to assess how human motor behavior
changes in response to active foot-ground stiffness modulation. Results will inform the potential utility of the
robotic footwear for basic and clinical research applications and the development of models to understand human
neuromotor control of locomotion and balance.
项目总结/摘要
运动和平衡功能障碍对独立性和生活质量有有害影响,
由一系列神经和肌肉骨骼疾病以及正常衰老引起。虽然现有
治疗方法可以对抗一些功能障碍,一些病理是持久的,如负重
不对称和适应性降低。这些病理学是由物理环境的动力学强烈定义的。
脚和地面之间的相互作用。因此,迫切需要新的工具来研究,并最终
帮助或重新训练人类如何管理与地面的物理互动。建议的目标
研究是为了使新的研究进入运动学习和人类适应,并提供一个可访问的,
通过开发便携式机器人鞋,
可以实时修改脚-地面界面处的刚度。本文的主要贡献包括:1)
创造技术能力,改变现实世界和实验室中的脚-地面相互作用动力学
2)使研究,辅助和重新训练人类步态和平衡的新方法成为可能,3)显著
通过量化人类对足部与地面相互作用长期变化的适应来推进科学知识
动力学,一个研究不足的领域,和4)通过提供便携式工具来改善临床实践,
使新的治疗方法、预防性干预措施和早期诊断广泛普及。拟议研究
是创新的,因为它将采用跨学科的方法,应用神经运动控制的概念,
生物力学和机器人技术,以开发一种新的机器人设备的研究,援助和康复。这
该提案涉及以下具体目标:
目标1:设计、制造和评估便携式机器人鞋,可以主动调节足部-地面
刚度,并独立测量每只脚的地面反作用力。
我们将设计,制造和验证机器人鞋与主动机制,以调节脚地面
界面刚度实时。刚度控制系统和车载传感器将被严格评估,
有效性和可靠性与实验室测试沿着与健康参与者进行全身
平衡和行走任务,而穿着设备。人体测试也将评估感知的安全性,
舒适性和系统的整体可用性。
目的2:探索机器人鞋不对称地降低足部-地面刚度对
站立和行走时的人类运动行为。
将对健康参与者进行额外的试点研究,以评估人类运动行为
响应于主动足部-地面刚度调制的变化。结果将告知潜在的效用,
用于基础和临床研究应用以及开发理解人类的模型的机器人鞋
运动和平衡的神经运动控制。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
分体带跑步机行走的最小努力模拟利用不对称性来减少代谢能量消耗。
- DOI:10.1152/jn.00343.2022
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Price,Mark;Huber,MeghanE;Hoogkamer,Wouter
- 通讯作者:Hoogkamer,Wouter
Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
机器人外骨骼对不对称髋部僵硬的步态适应。
- DOI:10.1109/tnsre.2024.3354517
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Abdikadirova,Banu;Price,Mark;Jaramillo,JonazMoreno;Hoogkamer,Wouter;Huber,MeghanE
- 通讯作者:Huber,MeghanE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wouter Hoogkamer其他文献
Wouter Hoogkamer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wouter Hoogkamer', 18)}}的其他基金
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10707873 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10510157 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10353856 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant














{{item.name}}会员




