Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
基本信息
- 批准号:10678900
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgeAreaAwardBasic ScienceBehaviorBehavioralBiomechanicsBiomedical TechnologyCaringClinicalClinical ResearchDataDevelopmentDevicesDiagnosisDiagnosticEarly DiagnosisEquilibriumFeedbackFunctional disorderGaitGoalsHumanImpairmentIndividualKnowledgeLaboratoriesLeadLearningLocomotionMeasurementMeasuresMechanicsMedicalMethodologyMethodsMissionModelingMotionMotorMultiple SclerosisMuscleMusculoskeletal DiseasesNational Institute of Biomedical Imaging and BioengineeringNeurodegenerative DisordersNeurologicNeuromechanicsParkinson DiseaseParticipantPathologyPerformancePeripheralPilot ProjectsPublic HealthQuality of lifeReactionRehabilitation deviceRehabilitation therapyReportingResearchResearch PersonnelResistanceRoboticsSafetyScientific Advances and AccomplishmentsSeriesShoesSignal TransductionSpecific qualifier valueStrokeSurveysSystemTestingTimeTrainingUnited States National Institutes of HealthValidity and ReliabilityWalkingWeight-Bearing stateWorkage relatedbehavior changeclinical practicedesigndisabilitydynamic systemequilibration disorderevidence baseexperimental analysisfallsfootgait rehabilitationimprovedinnovationinsightinventionkinematicslight weightmotor behaviormotor learningneuralneuroadaptationneuroregulationnew technologynormal agingnovelportabilitypreventive interventionrecruitrehabilitation paradigmresponserobotic devicesensortooltransmission processtreadmillusabilitywearable device
项目摘要
PROJECT SUMMARY/ABSTRACT
Locomotor and balance dysfunction, which have a pernicious effect on independence and quality of life, are
caused by of a broad range of neural and musculoskeletal disorders as well as normal aging. While existing
treatment methods can counter some dysfunctions, some pathologies are persistent, such as weight-bearing
asymmetry and reduced adaptability. These pathologies are strongly defined by the dynamics of the physical
interaction between the feet and the ground. Thus, there is a critical need for novel tools to study, and ultimately
assist or re-train, how humans manage their physical interaction with the ground. The objective of the proposed
research is to enable new research into motor learning and human adaptation and provide an accessible,
effective vehicle for gait and balance rehabilitation through the development of portable robotic footwear which
can modify stiffness at the foot-ground interface in real-time. The significant contributions of this work include: 1)
creating the technical capability to change foot-ground interaction dynamics in both real-world and laboratory
settings, 2) enabling new methods of studying, assisting, and re-training human gait and balace, 3) significantly
advancing scientific knowledge by quantifying human adaptation to long-term changes in foot-ground interaction
dynamics, an understudied area of research, and 4) improving clinical practice by providing a portable tool to
make new treatments, preventative interventions, and early diagnoses widely accessible. The proposed research
is innovative because it will employ a transdisciplinary approach, applying concepts from neuromotor control,
biomechanics, and robotics, to develop a novel robotic device for research, assistance, and rehabilitation. This
proposal addresses the following specific aims:
Aim 1: Design, build and evaluate portable, robotic footwear that can actively modulate foot-ground
stiffness and measure the ground reaction forces of each foot independently.
We will design, fabricate, and validate robotic footwear with an active mechanism to modulate foot-ground
interface stiffness in real-time. The stiffness control system and onboard sensors will be rigorously evaluated for
validity and reliability with bench testing along with a pilot study with healthy participants performing whole-body
balance and walking tasks while wearing the device. Human testing will also evaluate the perceived safety,
comfort, and overall usability of the system.
Aim 2: Explore the effect of asymmetrically reducing foot-ground stiffness with the robotic footwear on
human motor behavior during standing and walking.
An additional pilot study will be conducted with healthy participants to assess how human motor behavior
changes in response to active foot-ground stiffness modulation. Results will inform the potential utility of the
robotic footwear for basic and clinical research applications and the development of models to understand human
neuromotor control of locomotion and balance.
项目总结/文摘
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimum effort simulations of split-belt treadmill walking exploit asymmetry to reduce metabolic energy expenditure.
分体带跑步机行走的最小努力模拟利用不对称性来减少代谢能量消耗。
- DOI:10.1152/jn.00343.2022
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Price,Mark;Huber,MeghanE;Hoogkamer,Wouter
- 通讯作者:Hoogkamer,Wouter
Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
机器人外骨骼对不对称髋部僵硬的步态适应。
- DOI:10.1109/tnsre.2024.3354517
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Abdikadirova,Banu;Price,Mark;Jaramillo,JonazMoreno;Hoogkamer,Wouter;Huber,MeghanE
- 通讯作者:Huber,MeghanE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wouter Hoogkamer其他文献
Wouter Hoogkamer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wouter Hoogkamer', 18)}}的其他基金
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10707873 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10510157 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Identifying potential cortical mechanisms responsible for gait impairment in older adult fallers
识别导致老年跌倒者步态障碍的潜在皮质机制
- 批准号:
10353856 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.9万 - 项目类别:
Research Grant














{{item.name}}会员




