Attacking failure of antibiotic treatment by targeting antimicrobial resistance enabler cell-states
通过针对抗生素耐药性细胞状态来应对抗生素治疗的失败
基本信息
- 批准号:10703342
- 负责人:
- 金额:$ 257.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:Acinetobacter baumanniiAntibiotic ResistanceAntibiotic TherapyAntibiotic susceptibilityAntibioticsAntimicrobial ResistanceBacterial InfectionsBioinformaticsBiological ModelsCellsCharacteristicsCollaborationsCollectionComplexDataDetectionDevelopmentDiagnosticDrug TargetingEarly DiagnosisEnvironmentEquationEtiologyEvolutionFailureFrequenciesGeneticGenomicsGenotypeGoalsHeelImmune systemIn VitroIndividualInfectionIntermediate resistanceLibrariesMapsMinorityMutationOrganismPathway interactionsPatientsPharmaceutical PreparationsPhenotypePopulationPredispositionPrincipal InvestigatorProcessRecording of previous eventsRegimenResistanceResistance developmentRoleRunningSamplingSideSourceStreptococcus pneumoniaeStressTestingTreatment FailureTreatment ProtocolsVariantWorkantimicrobialarms raceblindcostdesigndiagnostic assaydiagnostic strategydrug discoveryemerging antibiotic resistanceemerging antimicrobial resistancefitnessgenetic associationgenomic toolsin vivoinnovationmembernovel diagnosticsnovel strategiesnovel therapeuticspathogenic bacteriapharmacokinetics and pharmacodynamicspressurepreventresistance generesistance mutationsynergismtranscriptional reprogrammingtranscriptome sequencing
项目摘要
SUMMARY
Deployment of new antimicrobials is promptly circumvented by the rapid evolution of resistance, underscoring
the critical need for new strategies to stay ahead in the arms-race against bacterial pathogens. Developing a
detailed understanding of the circumstances as well as genetic and mechanistic basis for which antibiotic
resistance develops provides opportunities for pre-emptively subverting this process. While infections caused by
organisms harboring antimicrobial resistance (AMR) genes are a major cause of antibiotic treatment failure (ATF),
ATF frequently occurs when the etiological agents are not AMR by traditional susceptibility testing. It is becoming
increasingly recognized that transient cell-states such as tolerance, persistence and hetero-resistance are critical
drivers underlying treatment failure. However, there is a paucity of data with regards to the genetic and
mechanistic basis for these cell-states as well as a lack of diagnostic-detection approaches. ATF cell-states
initially exist as minority variants within a population and display a transient phenotype that tends to dissipate as
the stress subsides, making them challenging to detect and consequently missed in current diagnostic assays.
These enabler cell-states remain mechanistically poorly understood and seem to preferentially arise during
fluctuating treatment regimens, for instance caused by a drug’s PK/PD characteristics, whereby ATF cell-states
can drive the re-emergence of the (susceptible) bacterial infection after antibiotic pressure wanes. Importantly,
this creates opportunities where multi-step high-level resistance mutations are given an extended opportunity to
emerge. Therefore, because antibiotic resistant variants often follow closely on the heels of the occurrence of
ATF cell-states, these cell-states can be viewed as enablers of antibiotic treatment failure and AMR. This
proposal focuses on untangling the importance of ATF cell-states in the emergence of antibiotic
resistance and treatment failure, and designs new approaches and strategies to identify, track and target
them. The main team consists of 4 principal investigators that have a very successful collaboration history.
Together they will work on 5 challenges distributed across 3 projects and supported by an administrative and a
genomics and bioinformatics core. In Challenge: 1) the full profile of possible genetic pathways that can induce
ATF cell-states is determined; 2) treatment regimens that drive the emergence of ATF-cell states are determined;
3) it is determined how ATF cell-states enable the emergence of AMR; 4) drugs and compounds are screened
for, that target ATF cell-state collateral sensitivities; 5) a computational deconvolution approach is developed
that predicts the presence and frequency of ATF cell-states in a complex bacterial population. Overall this
proposal contains a collection of conceptually and technically innovative aspects that are geared towards
understating the genetic mechanisms and evolutionary forces that sit at the root of the emergence of resistance,
with the ultimate goal to design new diagnostics and antimicrobial strategies that can slow or even stop the
current endless arms-race “that takes all the running we can do, to keep in the same place”.
总结
耐药性的快速演变迅速规避了新抗菌剂的部署,
迫切需要制定新的战略,以便在与细菌病原体的军备竞赛中保持领先地位。开发一
详细了解抗生素使用的情况以及遗传和机制基础
抵抗的发展为先发制人地破坏这一进程提供了机会。而感染由
携带抗微生物剂抗性(AMR)基因的生物体是抗生素治疗失败(ATF)的主要原因,
当病原体不是传统药敏试验确定的AMR时,常发生ATF。它正在成为
越来越多的人认识到,细胞的瞬时状态,如耐受性、持久性和异质抗性是至关重要的
导致治疗失败的驱动因素。然而,关于遗传和基因的数据很少,
这些细胞状态的机制基础以及缺乏诊断检测方法。ATF细胞状态
最初作为少数变异体存在于群体中,并显示出瞬时表型,
压力减弱,使得它们难以检测,从而在当前的诊断测定中被遗漏。
这些使能细胞状态在机制上仍然知之甚少,似乎优先出现在
波动的治疗方案,例如由药物的PK/PD特征引起的,由此ATF细胞状态
可以在抗生素压力减弱后促使(易感)细菌感染重新出现。重要的是,
这就创造了机会,多步高水平耐药突变被给予了延长的机会,
出现。因此,由于抗生素耐药变异体往往紧跟着抗生素耐药的发生,
ATF细胞状态,这些细胞状态可以被视为抗生素治疗失败和AMR的促成因素。这
一项提案的重点是解开ATF细胞状态在抗生素出现中的重要性
耐药性和治疗失败,并设计新的方法和战略,以确定,跟踪和目标
他们主要团队由4名主要研究人员组成,他们有着非常成功的合作历史。
他们将共同致力于分布在3个项目中的5个挑战,并由一个行政和一个
基因组学和生物信息学核心。在挑战:1)可能的遗传途径的完整概况,可以诱导
确定ATF细胞状态; 2)确定驱动ATF细胞状态出现的治疗方案;
3)确定ATF细胞状态如何使AMR出现; 4)筛选药物和化合物
5)提出了一种计算反褶积方法
预测复杂细菌群体中ATF细胞状态的存在和频率。总的来说这
提案包含一系列概念和技术创新方面,
了解耐药性产生的根源是遗传机制和进化力量,
最终目标是设计新的诊断和抗菌策略,可以减缓甚至阻止
目前无休止的军备竞赛“需要我们尽一切努力,保持在同一个地方”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vaughn Cooper其他文献
Vaughn Cooper的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vaughn Cooper', 18)}}的其他基金
2023 Microbial Population Biology Gordon Research Conference and Gordon Research Seminar
2023年微生物种群生物学戈登研究会议暨戈登研究研讨会
- 批准号:
10753797 - 财政年份:2023
- 资助金额:
$ 257.16万 - 项目类别:
EvolvingSTEM: authentic classroom research curriculum to enhance inclusion and agency in modern life science
EvolvingSTEM:真实的课堂研究课程,以增强现代生命科学的包容性和能动性
- 批准号:
10664572 - 财政年份:2023
- 资助金额:
$ 257.16万 - 项目类别:
Drug resistance enablers and their role in antibiotic treatment failure
耐药性促成因素及其在抗生素治疗失败中的作用
- 批准号:
10703347 - 财政年份:2022
- 资助金额:
$ 257.16万 - 项目类别:
Molecular mechanisms of adaptive diversity in Burkholderia biofilms
伯克霍尔德杆菌生物膜适应性多样性的分子机制
- 批准号:
8818035 - 财政年份:2015
- 资助金额:
$ 257.16万 - 项目类别:
Molecular mechanisms of adaptive diversity in Burkholderia biofilms
伯克霍尔德杆菌生物膜适应性多样性的分子机制
- 批准号:
9258441 - 财政年份:2015
- 资助金额:
$ 257.16万 - 项目类别:
Ecological population structure and emergence of virulent Vibrio parahaemolyticus
副溶血弧菌的生态种群结构和强毒力的出现
- 批准号:
7573549 - 财政年份:2009
- 资助金额:
$ 257.16万 - 项目类别:
Ecological population structure and emergence of virulent Vibrio parahaemolyticus
副溶血弧菌的生态种群结构和强毒力的出现
- 批准号:
7847548 - 财政年份:2009
- 资助金额:
$ 257.16万 - 项目类别:
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 257.16万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 257.16万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 257.16万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 257.16万 - 项目类别: