Mechanotransduction mechanisms of ovarian aging

卵巢衰老的机械传导机制

基本信息

项目摘要

PROJECT SUMMARY Aging affects all tissues and is associated with functional deterioration. Each tissue has specific aging kinetics, and the female reproductive system is the first to age. Female reproductive aging is associated with a decrease in oocyte quality and quantity as well as a reduction in the ovarian hormones, which accelerates women physiologic aging. Reproductive transitions, such as reproductive aging, are a priority of the Fertility and Infertility branch of the National Institutes of Health, and thus my proposed research is tightly aligned with the mission of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. A major contributor to the age-associated reduction of female fertility is the decrease in oocyte quality due to an increase in oocyte aneuploidy, but our work and others have demonstrated that other factors, such as the tissue microenvironment, might contribute to the age-associated reduction in oocyte quality. Physical cues from the tissue environment are major regulators of cell behavior. In the ovary, stiffness is relevant for normal follicle development but also associated with pathological conditions. In mice, stiff environments maintain primordial follicles in a quiescent state. However ovarian stiffness is also a characteristic of polycystic ovarian syndrome in humans. In my postdoctoral work I pioneered the use of instrumental indentation to measure the biomechanical properties of the ovary and I found that mice ovaries become stiffer with advanced reproductive age. My work on ovarian stiffness laid the foundation of this proposal where I will test the overarching hypothesis that the age-associated and spatially-dependent increase in ovarian stiffness creates a physical environment that impacts follicle development and oocyte quality through activation of mechanotransduction pathways in the follicle. This hypothesis will be tested in three specific aims. First, I will determine the subcellular features that define ovarian stiffness by performing a 3D spatio-temporal architecture map of the ovarian stiffness in an age and estrous cycle dependent manner. Second, I will investigate how stiffness affects follicle development and oocyte competency at the transcriptional and cellular level. I will establish an in vitro system which enables precise control of the physical environment. Third, I will explore the mechanism by which the follicle integrates the physical cues and whether the dysregulation of this mechanism accelerates reproductive aging. I will investigate whether follicles from reproductively young and old mice have the same capacity to respond to physical cues through the activation of mechanotransduction pathways, focusing on YAP1. I will complement these studies with in vitro loss-of-function approaches and a YAP1 engineered animal model. Overall, this research will define the ovary’s mechanical properties as a novel regulatory mechanism of reproductive aging. Finally, the research and career developmental plan proposed here are integral to enhance my scientific training and critical thinking and accomplish my goal of becoming an independent scientist in the field of reproductive aging.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farners Amargant i Riera其他文献

Farners Amargant i Riera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farners Amargant i Riera', 18)}}的其他基金

Mechanotransduction mechanisms of ovarian aging
卵巢衰老的机械传导机制
  • 批准号:
    10907947
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
Mechanotransduction mechanisms of ovarian aging
卵巢衰老的机械传导机制
  • 批准号:
    10429460
  • 财政年份:
    2022
  • 资助金额:
    $ 12.84万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 12.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了