Functional contribution of Metabolism in embryonic development
新陈代谢在胚胎发育中的功能贡献
基本信息
- 批准号:10701781
- 负责人:
- 金额:$ 23.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAntisense OligonucleotidesAreaBiologicalBiological ModelsBiologyBiosensorBody SizeCalciumCell Differentiation processCell LineageCell divisionCell physiologyCellsCellular biologyChemicalsConfocal MicroscopyDNA biosynthesisDataDevelopmentDevelopmental BiologyEmbryoEmbryonic DevelopmentEndomesodermEventFatty AcidsFertilizationGenesGlucoseGlycolysisHourImageMediatingMetabolicMetabolic PathwayMetabolismModelingMolecularMorphologyOrganismOutcomeOxidation-ReductionOxidative PhosphorylationOxygenPathway interactionsPatternPhenotypePhysiologic pulsePhysiologicalPlayProtein BiosynthesisProteinsPyruvateRegulationReportingResearchRoleSea UrchinsSignal TransductionSpecific qualifier valueTestingTimeVisualizationWarburg EffectWorkaerobic glycolysisbeta cateninbiosynthetic productblastocystblastomere structurecancer cellcell fate specificationcell typecellular developmentembryo cellexperimental studygastrulationgene regulatory networkin vivoinhibitormembrane synthesismetabolomicsprotein biomarkersprotein expressionsensortemporal measurementtool
项目摘要
PROJECT SUMMARY
Aerobic glycolysis was first identified in cancer cells (Warburg effect). This unusual metabolic process is
considered to supply necessary biosynthetic products to sustain DNA, protein, and membrane synthesis
in highly proliferative cells. However, the actual physiological significance of glycolysis remains largely
unknown. Recent reports suggest that aerobic glycolysis may directly influence cellular function and
development beyond matching a cell’s biosynthetic demands. Indeed, in our preliminary metabolomics
results using the sea urchin embryo as a model system, dynamic metabolic regulation appears to be
present throughout embryogenesis and further critical for a specific cell signaling event that occurs at the
16-cell stage of the embryo (5 hours post fertilization; 5hpf). This signaling event is called “micromere
signaling” and known to drive endomesodermal specification in the entire embryo at two days post
fertilization (2dpf). Based on these preliminary findings, we hypothesize that dynamic metabolic
regulation serves as another layer of mechanism for cell specification and signaling during
embryogenesis. To prove this hypothesis, in the proposed research, we will first visualize metabolic
dynamics in real time and in vivo throughout embryogenesis, using GFP-tagged metabolic sensors.
Imaging will be performed by 4D-confocal microscopy to maximize the spatial and temporal
resolution of metabolic dynamics, which will be further subject to quantitative analysis for each cell
lineage and for each developmental stage. Second, we will test the functional significance of each
metabolic pathway (Glycolysis, Fatty Acid Synthesis, Oxidative Phosphorylation), especially in the
event of micromere signaling at the 16-cell stage. Multiple inhibitors for each metabolic pathway will
be applied for ~0.5 hour to the entire embryo or specifically to the micromeres at the 16-cell stage.
The latter will be accomplished by constructing chimeric embryos in which the micromeres are
replaced with the inhibitor-treated micromeres. The phenotypes will be then scored by analyzing
temporal and spatial expression of polarity factors and fate determinants that drive the micromere-
specific Gene Regulatory Network and is critical for endomesodermal specification, as well as
overall morphology (e.g. successful gastrulation) in the resultant embryos. These experiments will
identify the essentiality of each metabolic pathway to entire embryonic patterning. Overall, the
proposed research will reveal the functional interplay of metabolic, gene and protein regulations essential
for embryonic development, which is still understudied in the field of cell and developmental biology.
项目摘要
有氧糖酵解首先在癌细胞中发现(瓦尔堡效应)。这种不寻常的代谢过程
被认为是提供维持DNA、蛋白质和膜合成所必需的生物合成产物
在高度增殖的细胞中。然而,糖酵解的实际生理意义仍然很大程度上
未知最近的报告表明,有氧糖酵解可能直接影响细胞功能,
发展超出了细胞的生物合成需求。事实上,在我们初步的代谢组学中,
结果利用海胆胚胎作为模型系统,动态代谢调节似乎是
存在于整个胚胎发生过程中,并且对于在胚胎发育过程中发生的特定细胞信号传导事件进一步至关重要。
16-胚胎的细胞阶段(受精后5小时; 5 hpf)。这个信号事件被称为“微节
信号传导”,并且已知在胚胎发育后两天驱动整个胚胎的内中胚层特化。
受精(2dpf)。基于这些初步发现,我们假设动态代谢
调节作为细胞特化和信号传导的另一层机制,
胚胎发生为了证明这一假设,在拟议的研究中,我们将首先可视化代谢
动态在真实的时间和体内整个胚胎发生,使用GFP标记的代谢传感器。
将通过4D共聚焦显微镜进行成像,以最大限度地提高空间和时间分辨率。
代谢动力学的分辨率,这将进一步对每个细胞进行定量分析
和每个发展阶段。第二,我们将测试每个功能的重要性,
代谢途径(糖酵解,脂肪酸合成,氧化磷酸化),特别是在
在16-细胞阶段的微粒体信号事件。每种代谢途径的多种抑制剂将
在整个胚胎或特别是在16细胞阶段的微粒体上施用约0.5小时。
后者将通过构建嵌合胚胎来实现,其中微节是
用经过处理的微粒代替。然后将通过分析表型进行评分,
驱动微粒的极性因子和命运决定因素的时空表达,
特异性基因调控网络,是内中胚层特化的关键,以及
所得胚胎的总体形态(例如成功的原肠胚形成)。这些实验将
确定每个代谢途径对整个胚胎模式的重要性。总体看
拟议中的研究将揭示代谢、基因和蛋白质调控的功能相互作用,
胚胎发育,这在细胞和发育生物学领域仍然研究不足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mamiko Yajima其他文献
Mamiko Yajima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mamiko Yajima', 18)}}的其他基金
Localized mRNA translation on the spindle -an essential mechanism for embryonic cell regulation
纺锤体上的局部 mRNA 翻译——胚胎细胞调节的重要机制
- 批准号:
10297862 - 财政年份:2017
- 资助金额:
$ 23.93万 - 项目类别:
Localized mRNA translation on the spindle -an essential mechanism for embryonic cell regulation
纺锤体上的局部 mRNA 翻译——胚胎细胞调节的重要机制
- 批准号:
10062994 - 财政年份:2017
- 资助金额:
$ 23.93万 - 项目类别:
Localized mRNA translation on the spindle -an essential mechanism for embryonic cell regulation
纺锤体上的局部 mRNA 翻译——胚胎细胞调节的重要机制
- 批准号:
10529553 - 财政年份:2017
- 资助金额:
$ 23.93万 - 项目类别:
Localized mRNA translation on the spindle -an essential mechanism for embryonic cell regulation
纺锤体上的局部 mRNA 翻译——胚胎细胞调节的重要机制
- 批准号:
10526711 - 财政年份:2017
- 资助金额:
$ 23.93万 - 项目类别:
相似海外基金
Development of Antisense Oligonucleotides to Regulate Gamma' Fibrinogen Levels
开发反义寡核苷酸来调节γ纤维蛋白原水平
- 批准号:
10759950 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Inducing H3F3A exon skipping with antisense oligonucleotides as an approach to treat diffuse intrinsic pontine glioma
用反义寡核苷酸诱导 H3F3A 外显子跳跃作为治疗弥漫性内源性脑桥胶质瘤的方法
- 批准号:
10677284 - 财政年份:2023
- 资助金额:
$ 23.93万 - 项目类别:
Inducing PKM splice-switching with antisense oligonucleotides as an approach to treat hepatocellular carcinoma
用反义寡核苷酸诱导 PKM 剪接转换作为治疗肝细胞癌的方法
- 批准号:
10464020 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Promoting adult hippocampal neurogenesis using antisense oligonucleotides as an Alzheimer's disease therapy
使用反义寡核苷酸促进成人海马神经发生作为阿尔茨海默氏病的治疗
- 批准号:
10484703 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Strategy for specific delivery of antisense oligonucleotides to T cells
将反义寡核苷酸特异性递送至 T 细胞的策略
- 批准号:
10547347 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Metabolism of Antisense Oligonucleotides and other Polyanions in Liver
反义寡核苷酸和其他聚阴离子在肝脏中的代谢
- 批准号:
10806783 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Metabolism of Antisense Oligonucleotides and other Polyanions in Liver
反义寡核苷酸和其他聚阴离子在肝脏中的代谢
- 批准号:
10689248 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Metabolism of Antisense Oligonucleotides and other Polyanions in Liver
反义寡核苷酸和其他聚阴离子在肝脏中的代谢
- 批准号:
10501862 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Inducing PKM splice-switching with antisense oligonucleotides as an approach to treat hepatocellular carcinoma
用反义寡核苷酸诱导 PKM 剪接转换作为治疗肝细胞癌的方法
- 批准号:
10623180 - 财政年份:2022
- 资助金额:
$ 23.93万 - 项目类别:
Identifying binding partners, biological substrates and antisense oligonucleotides regulating expression of short and long ACE2.
识别调节短和长 ACE2 表达的结合伴侣、生物底物和反义寡核苷酸。
- 批准号:
BB/V019848/1 - 财政年份:2021
- 资助金额:
$ 23.93万 - 项目类别:
Research Grant