Defining the mechanism of lipid peroxidation in controlling Staphylococcus aureus infections
定义脂质过氧化控制金黄色葡萄球菌感染的机制
基本信息
- 批准号:10703348
- 负责人:
- 金额:$ 10.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAmino AcidsAntibioticsArachidonic AcidsAutomobile DrivingBacteriaBiologyBiotinCell physiologyCellsCessation of lifeChemicalsChemistryDevelopmentDrug resistanceEnzymesExcretory functionFatty AcidsFutureHarvestHumanImmuneIn VitroInfectionInvadedIonsKineticsKnowledgeLipid PeroxidationLipidsMeasuresModificationMolecularMusMutateOxidantsOxidative StressPathogenesisPathway interactionsPharmaceutical PreparationsPhospholipidsPolyunsaturated Fatty AcidsPost-Translational Protein ProcessingProcessProteinsProteomeReactionRecombinantsRespirationRoleScanningSepsisStaphylococcus aureusStaphylococcus aureus infectionSystemic infectionTestingTherapeuticTherapeutic InterventionTissuesToxic effectUnited StatesValidationantimicrobialbactericidedesignexperimental studyin vivoin vivo evaluationinsightketoaldehydemacromoleculemouse modelmutantnovelnovel therapeuticspathogenresistant strainsmall moleculetargeted treatmenttherapeutic developmenttool
项目摘要
Project Summary
Staphylococcus aureus infects every niche of the human host and is the leading cause of Gram-positive
sepsis. There are over 900,000 severe S. aureus infections in the United States annually, emphasizing the
need for new antibiotics to treat these infections. Understanding the molecular mechanisms used by the host to
kill S. aureus and by S. aureus to defend against host killing will identify and validate novel targets for
antimicrobial design. When the host encounters S. aureus, immune cells excrete various bactericidal small
molecules. One class of bactericidal small molecules are polyunsaturated fatty acids, which are toxic to many
bacterial species, but until recently the mechanism of toxicity was undefined. We discovered that arachidonic
acid (AA), an abundant host polyunsaturated fatty acid, is bactericidal against S. aureus through a lipid
peroxidation mechanism. AA is oxidized in S. aureus to a,b-unsaturated carbonyls and g-ketoaldehydes that
are electrophilic, reacting with nucleophilic amino acids of the S. aureus proteome. Scavenging either oxidants
that initiate lipid peroxidation or electrophiles generated through lipid peroxidation protects S. aureus from AA
killing, confirming lipid peroxidation generated electrophiles as the bactericidal effectors of AA. Discovering the
mechanism of AA toxicity against S. aureus is just the first step in identifying and validating lipid peroxidation
as an antimicrobial strategy. We do not know the lipid electrophile species generated in S. aureus and what S.
aureus proteins are targeted by electrophiles. We also do not know the S. aureus processes that produce the
oxidants responsible for initiating lipid peroxidation or the identity of the oxidants produced in S. aureus.
Finally, we do not know the specific host niches where lipid peroxidation is bactericidal or which host niches
are most promising to test lipid peroxidation as an antimicrobial therapy. This proposal will expand the
understanding of the bactericidal mechanisms of AA both in vitro and in vivo by testing three main hypotheses.
In Aim 1, we will determine the lipid electrophile species and pathways of formation in S. aureus. This aim will
test the hypothesis that oxidants derived from S. aureus respiration initiate lipid peroxidation resulting in a
diverse array of bactericidal lipid electrophiles. In Aim 2, we will discover the protein targets of AA-derived lipid
electrophiles in S. aureus. This aim will test the hypothesis that lipid electrophiles exert toxicity by disrupting
enzymes in essential S. aureus processes through post-translational modification. In Aim 3, we will define the
role of AA release in S. aureus pathogenesis. This aim will test the hypothesis that inhibiting host AA release
results in increased S. aureus pathogenesis in a murine model of systemic infection and that the bactericidal
role of AA will be different across the multiple host tissues tested. The insights gained from this proposal will
further validate lipid peroxidation as an antimicrobial therapy, identify S. aureus proteins to target for
antimicrobial development, and expand the understanding of the bactericidal role of AA in vivo.
项目摘要
金黄色葡萄球菌感染人类宿主的每一个生态位,是革兰氏阳性菌的主要原因。
败血症有超过900,000个严重的S。金黄色葡萄球菌感染在美国每年,强调
需要新的抗生素来治疗这些感染。了解宿主使用的分子机制,
杀死S。aureus和S.金黄色葡萄球菌防御宿主杀伤将确定和验证新的目标,
抗菌设计当宿主遇到S.金黄色葡萄球菌,免疫细胞分泌各种杀菌小
分子。一类杀菌小分子是多不饱和脂肪酸,它对许多人来说是有毒的。
细菌种类,但直到最近的毒性机制是不确定的。我们发现花生四烯酸
酸(AA)是一种丰富的宿主多不饱和脂肪酸,对沙门氏菌具有杀菌作用。金黄色葡萄球菌通过脂质
过氧化机理AA在S中被氧化。金黄色葡萄球菌转化为A,B-不饱和羰基和G-酮醛,
是亲电子的,与S.金黄色葡萄球菌蛋白质组清除氧化剂
启动脂质过氧化或通过脂质过氧化产生的亲电体保护S。来自AA的金黄色葡萄球菌
杀,证实脂质过氧化产生的亲电体是AA的杀菌效应物。发现所述
AA对S.金黄色葡萄球菌只是识别和验证脂质过氧化作用的第一步
作为一种抗菌策略。我们不知道在S. aureus和S.
金黄色葡萄球菌蛋白被亲电试剂靶向。我们也不知道S。aureus过程产生
负责启动脂质过氧化反应的氧化剂或S.金黄色。
最后,我们不知道脂质过氧化作用是杀菌作用的特定宿主生态位,也不知道哪些宿主生态位
是最有希望测试脂质过氧化作为一种抗菌治疗。这项建议将扩大
通过测试三个主要假设,了解AA在体外和体内的杀菌机制。
目的1:确定S.金黄色。这一目标将
验证氧化剂来源于S.金黄色葡萄球菌呼吸启动脂质过氧化,
各种各样的杀菌脂质亲电体。目的二是寻找AA衍生脂质的靶蛋白
S.金黄色。这一目的将检验脂质亲电体通过破坏细胞内蛋白质而产生毒性的假设。
必需S.金黄色葡萄球菌通过翻译后修饰进行加工。在目标3中,我们将定义
AA释放在S.金黄色葡萄球菌发病机制这一目的将检验抑制宿主AA释放
增加了S。金黄色葡萄球菌在小鼠全身感染模型中的发病机制,
AA的作用在测试的多种宿主组织中将是不同的。从该提案中获得的见解将
进一步验证脂质过氧化作为抗微生物疗法,鉴定S.目标蛋白
抗微生物的发展,并扩大了对AA在体内杀菌作用的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Norris Beavers其他文献
William Norris Beavers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Norris Beavers', 18)}}的其他基金
Defining the mechanism of lipid peroxidation in controlling Staphylococcus aureus infections
定义脂质过氧化控制金黄色葡萄球菌感染的机制
- 批准号:
10301706 - 财政年份:2022
- 资助金额:
$ 10.73万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别: