Modeling the spatiotemporal properties of crosstalk between RYR-mediated and IP3R-mediated calcium signaling in cardiac myocytes
模拟心肌细胞中 RYR 介导和 IP3R 介导的钙信号传导之间串扰的时空特性
基本信息
- 批准号:10701689
- 负责人:
- 金额:$ 4.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectArrhythmiaBehaviorCalciumCalcium SignalingCardiac MyocytesCardiovascular DiseasesCause of DeathCell membraneCell physiologyCellsCessation of lifeClinicalComputer ModelsCouplingCytoplasmDataDevelopmentDiseaseEventFoundationsFrequenciesGeometryHeart AtriumHeart failureHeterogeneityIn VitroIndividualLinkMeasuresMediatingMembraneMinorModelingMuscle CellsOutcome MeasurePathologicPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPlayProbabilityProcessPropertyRattusRiskRoleRyanodine Receptor Calcium Release ChannelSignal TransductionSiteSumTestingTrainingValidationVentricularVentricular ArrhythmiaVisualizationcell typedesigninsightmathematical modelmulti-scale modelingnanometernovelpredictive modelingpreventreceptorreceptor expressionspatiotemporalsudden cardiac deathtoolvoltage
项目摘要
PROJECT SUMMARY
Sudden cardiac death (SCD) is estimated to cause 4-5 million deaths per year worldwide. In patients with heart
failure, SCD is the number one leading cause of death and is linked to the onset of ventricular arrhythmias.
Understanding how ventricular arrhythmias arise in patients with heart failure is thus critical to designing
effective drugs that prevent SCD and prolong survival in patients with heart failure. In ventricular
cardiomyocytes, the foundation of excitation-contraction coupling is intracellular Ca2+ signaling. Specifically,
activation of voltage-gated Ca2+ channels cause Ca2+ release from the SR via Ca2+ release channels resulting
in local increases in cytoplasmic [Ca2+] known as “sparks.” Sparks then sum to generate global increases in
cytoplasmic [Ca2+] across the cell called Ca2+ transients. Under normal circumstances, this is a tightly
controlled and coordinated process that leads to synchronous contraction of the ventricles. When disturbed,
however, dyssynchronous Ca2+ release across the cell, known as Ca2+ waves, can lead to uncoordinated
ventricular contraction i.e. arrhythmia.
When studying conditions that are technically challenging—such as visualizing the arrangement of individual
Ca2+ release channels on the SR—or investigating conditions that cannot be easily manipulated—such as
studying how changing that arrangement affects probability of arrhythmogenic wave formation—computational
modeling becomes very useful. Such variables can be easily manipulated to predict experimentally measurable
outcomes. While modeling has been used to study Ca2+ sparks and waves previously, current mathematical
models make several assumptions about the subcellular properties of Ca2+ release units. More specifically,
they assume that only ryanodine receptors are responsible for SR Ca2+ release while ignoring IP3 receptors,
which are lowly expressed in healthy ventricular myocytes and show increased expression in failing myocytes.
They also assume homogeneous dyadic geometry and spatial arrangement of channels between release sites.
While it is known that properties such as the number of release channels in a release unit are variable in
healthy myocytes, these effects as well as changes to dyadic geometry become especially prominent in failing
ventricular myocytes in which remodeling has occurred, and should thus be included in models.
Given the immense clinical need to understand how changes to ventricular myocytes in heart failure
predisposes to arrhythmia and SCD yet the difficulty in experimentally manipulating important spatial and
geometric changes found in failing myocytes, there is a clear need for accurate mathematical models of
intracellular Ca2+ signaling in failing compared to healthy myocytes. I plan to address this need by developing
more accurate models of Ca2+ sparks and Ca2+ waves that account for (1) heterogeneity in Ca2+ release units
and (2) the expression of IP3 receptors in both healthy and diseased ventricular myocytes. I will then refine
these models based on in vitro experimental findings.
项目概要
据估计,全球每年有 4-500 万人死于心源性猝死 (SCD)。对于心脏病患者
心律失常是导致死亡的第一大原因,并且与室性心律失常的发生有关。
因此,了解心力衰竭患者如何发生室性心律失常对于设计至关重要
预防 SCD 并延长心力衰竭患者生存期的有效药物。心室内
心肌细胞中,兴奋-收缩耦合的基础是细胞内 Ca2+ 信号传导。具体来说,
电压门控 Ca2+ 通道的激活导致 Ca2+ 通过 Ca2+ 释放通道从 SR 释放,从而导致
细胞质 [Ca2+] 的局部增加被称为“火花”。然后火花相加,产生全球增长
细胞质 [Ca2+] 穿过细胞称为 Ca2+ 瞬变。在正常情况下,这是一个紧密的
导致心室同步收缩的受控和协调过程。当受到打扰时,
然而,跨细胞的不同步 Ca2+ 释放(称为 Ca2+ 波)可能会导致不协调
心室收缩,即心律失常。
当研究技术上具有挑战性的条件时,例如可视化个体的排列
SR 上的 Ca2+ 释放通道 - 或调查不易操纵的条件 - 例如
研究改变这种排列如何影响致心律失常波形成的概率——计算
建模变得非常有用。这些变量可以很容易地操纵来预测实验可测量的结果
结果。虽然以前已使用建模来研究 Ca2+ 火花和波,但当前的数学
模型对 Ca2+ 释放单位的亚细胞特性做出了一些假设。更具体地说,
他们假设只有兰尼碱受体负责 SR Ca2+ 的释放,而忽略了 IP3 受体,
它们在健康的心室肌细胞中表达较低,而在衰竭的心肌细胞中表达增加。
他们还假设释放点之间的通道具有均匀的二元几何形状和空间排列。
虽然众所周知,诸如释放单元中释放通道的数量之类的属性是可变的
对于健康的肌细胞来说,这些影响以及二元几何形状的变化在失败时变得尤为突出
发生重构的心室肌细胞,因此应包含在模型中。
鉴于临床迫切需要了解心力衰竭中心室肌细胞的变化
易导致心律失常和 SCD,但在实验上操纵重要的空间和
在衰竭的心肌细胞中发现几何变化,显然需要精确的数学模型
与健康肌细胞相比,细胞内 Ca2+ 信号传导失败。我计划通过开发来解决这个需求
更准确的 Ca2+ 火花和 Ca2+ 波模型解释了 (1) Ca2+ 释放单元的异质性
(2)IP3受体在健康和患病心室肌细胞中的表达。然后我会完善
这些模型基于体外实验结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DeAnalisa Jones其他文献
DeAnalisa Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 4.9万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 4.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




