A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
基本信息
- 批准号:10681965
- 负责人:
- 金额:$ 78.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAddressAgeAlgorithmsAttentionBayesian MethodBayesian ModelingBiologicalBrainBrain imagingCaringCharacteristicsChildChildhoodClinicalClinical DataClinical ProtocolsCollectionCommunitiesDataData AggregationData CollectionDatabasesDiagnosisDiagnostic SpecificityDimensionsFunctional Magnetic Resonance ImagingGoalsGrainHeterogeneityHybridsImageIndividualKnowledgeMagnetic Resonance ImagingMeasurementMeasuresMethodologyMethodsModelingNatureNeurosciencesPatternPhenotypeReproducibilityResearchResourcesRestSample SizeSamplingSiteSourceStructureSubgroupSymptomsSyndromeSystemSystems AnalysisTestingTimeVariantWorkautism spectrum disorderbiological heterogeneitybiological researchboysbrain abnormalitiesbrain behaviorclinical heterogeneityclinical phenotypeclinically relevantcombatconnectomedata exchangedata harmonizationdata resourcegirlsimprovedindexingindividuals with autism spectrum disorderlarge datasetsmosaicneuralneuroimagingneurophysiologynovelphenotypic dataprecision medicinequality assurancerepetitive behaviorresponsesexsocial communicationsocial structuretheories
项目摘要
ABSTRACT
This application proposes to lay the groundwork for precision medicine approaches to autism spectrum disorder
(ASD) by identifying reproducible clinically relevant brain-connectome-based subtypes. The proposal addresses
the clinical and biological heterogeneity of ASD by focusing on the intermediate level of analysis of systems
neuroscience, following clues that ASD is associated with abnormalities in the brain functional connectome.
Thus, we aim to identify neurosubtypes (NS), i.e., subgroups of individuals with homogeneous atypical features,
based on measures of intrinsic functional connectivity (iFC). Primary aims are to: 1) generate a large,
retrospectively harmonized data resource with comprehensive assessment of iFC and clinical phenotypes; 2)
identify iFC-based neurosubtypes and establish their associations with clinically relevant phenotypes; 3) test the
replicability of neurosubtypes and their associations with phenotypic measures in an independent sample . To
this end, we propose to leverage existing large-scale ASD neuroimaging data collections from the Autism Brain
Imaging Data Exchange, the National Database for Autism Research, and the Healthy Brain Network. Sample:
Age/Sex: Boys and girls, 6-18 years old. Diagnosis: ASD and neurotypical (NT) individuals. Size: to date, the
above neuroimaging resources contain a total N=3528; ASD n=2136, NT n=1392. Methods: Following
systematic and extensive data organization, rigorous quality assurance, and preprocessing we will proceed with
quantitative data harmonization using state-of-the-art methods. CovBat, the most advanced version of the
Bayesian framework, ComBat, will be applied to harmonize MRI data. It has been developed by Co-I Shinohara
to control for inter-scanner differences in MRI-based measures, as well as for errors arising from subject
differences in measurement covariance. Recent advances in item response theory will be used to harmonize
phenotypic data, informed by preliminary clinical work. To further enhance our clinical data harmonization efforts,
the neuroimaging data will be aggregated with phenotypic-only collections from Co-Is Lord and Bishop (ASD
n=1513). Connectopathy features: To scope the entire spectrum of ASD connectopathy, multiple features will be
assessed simultaneously for the first time. Neurosubtypes: Building on our feasibility work with Co-I Yeo,
homogeneous neural ASD subgroups will be identified through novel Bayesian latent factor modeling. It allows
for subjects to belong to subtypes in varying degrees, identifying hybrid, categorical and dimensional,
neurosubtypes. Other key questions include the relevance of MRI features studied, the diagnostic specificity of
neurosubtypes, and cross-subtyping method validity. The neurosubtypes identified and methods for
harmonization, along with all data generated for mega-analyses will be regularly shared, starting at the end of
year two. Findings will address critical knowledge gaps and the novel resource will offer the scientific community
opportunities to pursue independent inquiries transforming biological research and knowledge of ASD.
抽象的
该申请旨在为自闭症谱系障碍的精准医学方法奠定基础
(ASD)通过识别可重复的临床相关的基于脑连接组的亚型。该提案涉及
通过关注系统分析的中间水平来研究 ASD 的临床和生物学异质性
神经科学,遵循自闭症谱系障碍与大脑功能连接组异常相关的线索。
因此,我们的目标是识别神经亚型(NS),即具有同质非典型特征的个体亚组,
基于内在功能连接(iFC)的测量。主要目标是:1)产生一个大的、
通过对 iFC 和临床表型的综合评估,回顾性地协调数据资源; 2)
识别基于 iFC 的神经亚型并建立它们与临床相关表型的关联; 3)测试
神经亚型的可复制性及其与独立样本中表型测量的关联。到
为此,我们建议利用来自自闭症大脑的现有大规模 ASD 神经影像数据收集
影像数据交换、国家自闭症研究数据库和健康大脑网络。样本:
年龄/性别:男女生,6-18岁。诊断:自闭症谱系障碍 (ASD) 和神经典型 (NT) 个体。尺寸:迄今为止,
上述神经影像资源共包含N=3528; ASD n=2136,NT n=1392。方法:以下
系统而广泛的数据组织、严格的质量保证以及我们将进行的预处理
使用最先进的方法进行定量数据协调。 CovBat,最先进的版本
贝叶斯框架 ComBat 将用于协调 MRI 数据。它是由 Co-I Shinohara 开发的
控制基于 MRI 的测量中扫描仪间的差异以及受试者产生的错误
测量协方差的差异。项目反应理论的最新进展将用于协调
表型数据,由初步临床工作提供。为了进一步加强我们的临床数据协调工作,
神经影像数据将与 Co-Is Lord 和 Bishop (ASD
n=1513)。连接病特征:为了了解自闭症谱系障碍(ASD)连接病的整个范围,将有多个特征
首次同时评估。神经亚型:以我们与 Co-I Yeo 的可行性工作为基础,
将通过新颖的贝叶斯潜在因素模型来识别同质神经 ASD 亚群。它允许
对于不同程度属于亚型的受试者,识别混合型、分类型和维度型,
神经亚型。其他关键问题包括所研究的 MRI 特征的相关性、诊断特异性
神经亚型和交叉亚型方法的有效性。已识别的神经亚型及其方法
从年底开始,将定期共享协调以及为大型分析生成的所有数据
第二年。研究结果将解决关键的知识差距,新颖的资源将为科学界提供帮助
进行独立调查的机会,改变 ASD 的生物学研究和知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adriana Di Martino其他文献
Adriana Di Martino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adriana Di Martino', 18)}}的其他基金
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:
10203750 - 财政年份:2018
- 资助金额:
$ 78.96万 - 项目类别:
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:
9767866 - 财政年份:2018
- 资助金额:
$ 78.96万 - 项目类别:
Neural signatures of outcome in preschoolers with autism
患有自闭症的学龄前儿童的神经特征
- 批准号:
10442708 - 财政年份:2018
- 资助金额:
$ 78.96万 - 项目类别:
Neuronal Correlates of Autistic Traits in ADHD and Autism
ADHD 和自闭症患者自闭症特征的神经元相关性
- 批准号:
9110319 - 财政年份:2015
- 资助金额:
$ 78.96万 - 项目类别:
Enhancing the Autism Brain Imaging Data Exchange to Define the Autism Connectome
加强自闭症脑成像数据交换以定义自闭症连接组
- 批准号:
8823301 - 财政年份:2015
- 资助金额:
$ 78.96万 - 项目类别:
Intrinsic Brain Architecture of Young Children with Autism While Awake and Asleep
自闭症幼儿清醒和睡眠时的内在大脑结构
- 批准号:
8621724 - 财政年份:2014
- 资助金额:
$ 78.96万 - 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:
8373888 - 财政年份:2010
- 资助金额:
$ 78.96万 - 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:
8197070 - 财政年份:2010
- 资助金额:
$ 78.96万 - 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:
8009446 - 财政年份:2010
- 资助金额:
$ 78.96万 - 项目类别:
Translational Developmental Neuroscience of Autism
自闭症转化发展神经科学
- 批准号:
7772415 - 财政年份:2010
- 资助金额:
$ 78.96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 78.96万 - 项目类别:
Research Grant














{{item.name}}会员




