3D Bioprinting of Strong Living Scaffolds
坚固生命支架的 3D 生物打印
基本信息
- 批准号:10682568
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAllograftingAnatomyBiocompatible MaterialsBiologicalBiological ProcessBiological ProductsBiomechanicsBlood VesselsCartilageCategoriesCell SurvivalCellsChemicalsChemistryClinical ResearchComplexDataDefectDepositionDevelopmentDiffusionDiseaseElasticityEmulsionsEncapsulatedEngineeringFamilyFibroblastsFibrocartilagesFormulationGelGelatinGoalsGrowth FactorHydrogelsIn VitroInfiltrationInjuryInkKneeLigamentsLiquid substanceMechanicsMedicalMeniscus structure of jointMethodsModalityModelingModulusMusculoskeletalNatural regenerationOilsOrganic solvent productOrthopedic SurgeryOryctolagus cuniculusPatientsPhasePolymersProliferatingPropertyQuality of lifeRegenerative engineeringResearchRiskSedimentation processTechnologyTemperatureTendon structureTestingTissuesWaterWorkadipose derived stem cellaqueousbioinkbiomaterial compatibilitybioprintingbioscaffoldbonecartilage regenerationclinical practicecytotoxicdesignfabricationfallsimplantationin vivoinnovationmanufacturemechanical propertiesmeetingsnovelpreservationrepairedscaffoldshear stresssoundstem cellstissue regenerationtissue repairtissue support frametransforming growth factor beta3
项目摘要
Project Summary
The regeneration of damaged or diseased tissues that serve biomechanical functions, such as musculoskeletal
tissues, has been a long-standing challenge in clinical practice and research. Regenerative engineering offers
a promising alternative to auto- or allografts for tissue regeneration by combining biomaterial scaffolds, viable
cells, and bioactive factors. Engineering scaffolds that provide both mechanical support and biological activities
is critical for regenerating such tissues with biomechanical functions. However, currently existing scaffolds,
which include either tough polymers with limited bioactivities or soft hydrogels with poor mechanical properties,
fall short of meeting both mechanical and biological needs. To address this issue, we propose the development
of a novel family of emulsion bioinks to enable the 3D bioprinting of strong living scaffolds with built-in
mechanical robustness and desirable biological functions for tissue regeneration. The encapsulation of
biologics (cells and bioactive factors) within scaffolds presents an attractive strategy to equip the scaffolds with
desired biological functions. The major roadblocks to encapsulate biologics within tough polymers include their
lack of bioactivity and the frequent usage of harmful chemicals, such as organic solvents and/or toxic reactants.
In this study, a water-in-oil emulsion bioink is designed by dispersing an aqueous internal phase of hydrogel
droplets (microgels) with encapsulated biologics in an external phase of tough polymer solution. It is
hypothesized that microgels will protect the functions of encapsulated biologics from harmful chemicals by
limiting their diffusion from the external to internal phases. The solidification of tough polymer around each
dispersed microgel during 3D-bioprinting will mainly contribute to mechanical robustness of the final scaffold.
The preliminary data demonstrates that: 1) >95% viability of fibroblast cells is achieved in an emulsion bioink;
and 2) the resulting emulsion scaffolds afford both the mechanical robustness (elastic moduli 5-40 MPa)
and >90% cell viability. This project will initiate with the development of cytocompatible and bioprintable cell-
laden emulsion bioinks, followed by characterization of 3D-bioprinted emulsion scaffolds, and conclude with
validating the functions of encapsulated bioactive factors and cells within scaffolds for meniscus regeneration
as a test model. This model will include assessments of proliferation, fibrochondrogenic differentiation in vitro,
and neo-menisci formation in vivo. Overall, our approach presents a new method to produce mechanically
strong and biologically functional living scaffolds by integrating emulsion chemistry and 3D bioprinting
technology. We anticipate that this work will have a broad and significant impact on regenerative engineering
by benefiting repair or regeneration of broad-spectrum tissues with biomechanical functions.
项目摘要
具有生物力学功能的受损或患病组织的再生,例如肌肉骨骼
组织中的蛋白质,一直是临床实践和研究中的长期挑战。再生工程提供
一种有前途的替代自体或同种异体移植物的组织再生结合生物材料支架,可行的
细胞和生物活性因子。提供机械支撑和生物活性的工程支架
对于再生具有生物力学功能的组织至关重要。然而,现有的脚手架,
其包括具有有限生物活性的坚韧聚合物或具有差机械性能的软水凝胶,
不能满足机械和生物学的需要。为了解决这个问题,我们建议发展
一种新型的乳液生物墨水家族,能够3D生物打印具有内置
机械坚固性和组织再生所需的生物学功能。的封装
支架内的生物制剂(细胞和生物活性因子)提供了一种有吸引力的策略,
所需的生物功能。将生物制剂封装在坚韧聚合物中的主要障碍包括它们的
缺乏生物活性和经常使用有害化学品,如有机溶剂和/或有毒反应物。
在本研究中,通过分散水凝胶的水性内相,设计了油包水乳液生物墨水
微滴(微凝胶)与包封的生物制剂在坚韧聚合物溶液的外相中。是
假设微凝胶将通过以下方式保护封装的生物制剂的功能免受有害化学物质的影响:
限制了它们从外相向内相的扩散。坚韧的聚合物在每个
在3D生物打印期间分散的微凝胶将主要有助于最终支架的机械坚固性。
初步数据表明:1)在乳液生物墨水中实现了>95%的成纤维细胞活力;
和2)所得的乳液支架提供机械坚固性(弹性模量5-40 MPa)
和>90%的细胞活力。该项目将开始与细胞相容性和生物打印细胞的发展,
装载的乳液生物墨水,随后是3D生物打印的乳液支架的表征,并得出结论:
验证用于半月板再生的支架内包封的生物活性因子和细胞的功能
作为测试模型。该模型将包括体外增殖、纤维软骨形成分化的评估,
和体内新血管形成。总的来说,我们的方法提出了一种新的方法,
通过整合乳化化学和3D生物打印,
技术.我们预计这项工作将对再生工程产生广泛而重大的影响
通过有利于具有生物力学功能的广谱组织的修复或再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonghui Ding其他文献
Yonghui Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonghui Ding', 18)}}的其他基金
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 25.41万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 25.41万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant














{{item.name}}会员




