3D Bioprinting of Strong Living Scaffolds
坚固生命支架的 3D 生物打印
基本信息
- 批准号:10682568
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAllograftingAnatomyBiocompatible MaterialsBiologicalBiological ProcessBiological ProductsBiomechanicsBlood VesselsCartilageCategoriesCell SurvivalCellsChemicalsChemistryClinical ResearchComplexDataDefectDepositionDevelopmentDiffusionDiseaseElasticityEmulsionsEncapsulatedEngineeringFamilyFibroblastsFibrocartilagesFormulationGelGelatinGoalsGrowth FactorHydrogelsIn VitroInfiltrationInjuryInkKneeLigamentsLiquid substanceMechanicsMedicalMeniscus structure of jointMethodsModalityModelingModulusMusculoskeletalNatural regenerationOilsOrganic solvent productOrthopedic SurgeryOryctolagus cuniculusPatientsPhasePolymersProliferatingPropertyQuality of lifeRegenerative engineeringResearchRiskSedimentation processTechnologyTemperatureTendon structureTestingTissuesWaterWorkadipose derived stem cellaqueousbioinkbiomaterial compatibilitybioprintingbioscaffoldbonecartilage regenerationclinical practicecytotoxicdesignfabricationfallsimplantationin vivoinnovationmanufacturemechanical propertiesmeetingsnovelpreservationrepairedscaffoldshear stresssoundstem cellstissue regenerationtissue repairtissue support frametransforming growth factor beta3
项目摘要
Project Summary
The regeneration of damaged or diseased tissues that serve biomechanical functions, such as musculoskeletal
tissues, has been a long-standing challenge in clinical practice and research. Regenerative engineering offers
a promising alternative to auto- or allografts for tissue regeneration by combining biomaterial scaffolds, viable
cells, and bioactive factors. Engineering scaffolds that provide both mechanical support and biological activities
is critical for regenerating such tissues with biomechanical functions. However, currently existing scaffolds,
which include either tough polymers with limited bioactivities or soft hydrogels with poor mechanical properties,
fall short of meeting both mechanical and biological needs. To address this issue, we propose the development
of a novel family of emulsion bioinks to enable the 3D bioprinting of strong living scaffolds with built-in
mechanical robustness and desirable biological functions for tissue regeneration. The encapsulation of
biologics (cells and bioactive factors) within scaffolds presents an attractive strategy to equip the scaffolds with
desired biological functions. The major roadblocks to encapsulate biologics within tough polymers include their
lack of bioactivity and the frequent usage of harmful chemicals, such as organic solvents and/or toxic reactants.
In this study, a water-in-oil emulsion bioink is designed by dispersing an aqueous internal phase of hydrogel
droplets (microgels) with encapsulated biologics in an external phase of tough polymer solution. It is
hypothesized that microgels will protect the functions of encapsulated biologics from harmful chemicals by
limiting their diffusion from the external to internal phases. The solidification of tough polymer around each
dispersed microgel during 3D-bioprinting will mainly contribute to mechanical robustness of the final scaffold.
The preliminary data demonstrates that: 1) >95% viability of fibroblast cells is achieved in an emulsion bioink;
and 2) the resulting emulsion scaffolds afford both the mechanical robustness (elastic moduli 5-40 MPa)
and >90% cell viability. This project will initiate with the development of cytocompatible and bioprintable cell-
laden emulsion bioinks, followed by characterization of 3D-bioprinted emulsion scaffolds, and conclude with
validating the functions of encapsulated bioactive factors and cells within scaffolds for meniscus regeneration
as a test model. This model will include assessments of proliferation, fibrochondrogenic differentiation in vitro,
and neo-menisci formation in vivo. Overall, our approach presents a new method to produce mechanically
strong and biologically functional living scaffolds by integrating emulsion chemistry and 3D bioprinting
technology. We anticipate that this work will have a broad and significant impact on regenerative engineering
by benefiting repair or regeneration of broad-spectrum tissues with biomechanical functions.
项目摘要
再生具有生物力学功能的受损或患病组织的再生,如肌肉骨骼
组织,一直是临床实践和研究中的一个长期挑战。再生工程提供
通过结合生物材料支架来替代自体或同种异体组织移植的一种有前途的替代方案,
细胞和生物活性因子。既提供机械支持又具有生物活性的工程支架
对于再生具有生物力学功能的此类组织至关重要。然而,目前已有的脚手架,
包括生物活性有限的坚韧聚合物或机械性能较差的软水凝胶,
不能同时满足机械和生物需求。为了解决这一问题,我们提出了开发
一种新的乳胶生物墨水家族,使具有内置的坚固生物支架的3D生物打印成为可能
机械坚固性和组织再生所需的生物功能。数据包的封装
支架内的生物制品(细胞和生物活性因子)提供了一种有吸引力的策略来装备支架
所需的生物功能。在坚韧的聚合物中封装生物制剂的主要障碍包括
缺乏生物活性和经常使用有害化学品,如有机溶剂和/或有毒反应物。
在本研究中,通过分散水凝胶的内水相来设计油包水乳状生物油墨。
在坚韧的聚合物溶液的外相中,含有封装的生物制剂的液滴(微凝胶)。它是
假设微凝胶将保护被包裹的生物制品的功能不受有害化学物质的影响
限制了它们从外部相向内部相的扩散。每一种坚韧的聚合物的固化
在3D生物打印过程中分散的微凝胶将主要有助于最终支架的机械稳定性。
初步数据表明:1)成纤维细胞在乳状生物墨水中的存活率为95%;
2)所制得的乳胶支架具有机械稳定性(弹性模数为5-40兆帕)
细胞存活率为90%。该项目将以细胞兼容和生物可染细胞的开发为起点。
加载乳胶生物油墨,然后表征3D生物打印的乳胶支架,并结束
包埋生物活性因子和细胞支架对半月板再生作用的验证
作为测试模型。该模型将包括体外增殖、纤维软骨分化、
体内新半月板的形成。总体而言,我们的方法提供了一种机械生产的新方法
集乳液化学和3D生物打印于一体的强大的生物功能生物支架
技术我们预计这项工作将对再生工程产生广泛而重大的影响
通过有利于具有生物力学功能的广谱组织的修复或再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonghui Ding其他文献
Yonghui Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonghui Ding', 18)}}的其他基金
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 25.41万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 25.41万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 25.41万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 25.41万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant














{{item.name}}会员




