Data Science Core: Interventions to improve alcohol-related comorbidities along the gut-brain axis in persons with HIV infection
数据科学核心:改善 HIV 感染者肠脑轴酒精相关合并症的干预措施
基本信息
- 批准号:10682453
- 负责人:
- 金额:$ 22.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Alcohol consumptionAlcoholic beverage heavy drinkerAlcoholsArtificial IntelligenceBacterial TranslocationBig DataBiological MarkersCharacteristicsClinical TrialsClinical Trials DesignCollaborationsComplementDataData AnalysesData CollectionData Management ResourcesData PoolingData Science CoreData SecurityDatabasesDevelopmentDiseaseEnsureEquityEthicsEtiologyFacultyGoalsHIVHIV InfectionsHealth PolicyHeavy DrinkingHuman ResourcesIndividualInterventionIntervention StudiesIntestinal permeabilityLearningLobeMachine LearningMeasurementMediationMethodologyMethodsModelingNeurocognitiveOnline SystemsOutcomePathogenicityPathway interactionsPatientsPersonsPrevention strategyProceduresProtocols documentationPublic HealthPublic PolicyPublicationsQualifyingQuality ControlRandomizedRecommendationResearchResearch DesignResearch PersonnelResearch Project GrantsResourcesSample SizeSchemeSeriesServicesSiteSourceStatistical Data InterpretationSystemTechniquesTestingThinnessTissuesTrainingTraining ProgramsTranslational ResearchValidationWitWorkalcohol abstinencealcohol effectalcohol measurementclinical practicecohortcomorbiditydata harmonizationdata managementdata resourcedata sharingdeep learningdesignelectronic data capture systemexperiencegut microbiomegut-brain axisimprovedintervention effectmicrobialmicrobiomemultimodal neuroimagingneuroimagingnovelpersonalized interventionpopulation healthpower analysispredictive modelingpredictive toolsrandomized, clinical trialsreduced alcohol useresearch data disseminationrisk mitigationstatistical learningsuccesssystemic inflammatory responsetooltrial design
项目摘要
The Data Science Core (DSC) will provide critical support for the P01 project as a whole to ensure its success
by offering a central source related to research design, data management, statistical analysis and machine
learning. The DSC has assembled a team of highly qualified investigators with a broad range of expertise in
HIV research including design of clinical trials, statistical inference methods, integration of diverse -omics data
and neuroimaging data, data management, data security, machine learning/artificial intelligence (ML/AI), and
analytics. The DSC will also provide training services in collaboration with the training programs in other
components of this P01. In addition to supporting the proposed two intervention studies in the P01, the DSC
will leverage existing data resources to test important hypotheses and build prediction models and
personalized recommendation tools for treating HIV infections for patients who are heavy drinkers. When the
data from Projects 1 and 2 are available, cross-cohort prediction and personalized recommendation tool will be
constructed with state-of-the-art statistical learning and machine learning techniques. Specifically, our aim one
will provide support in study design, data management, data sharing, statistical analysis, and research
dissemination to ensure proper and efficient conduct of the two research projects. Working closely with the
Administrative Core and two project teams, this aim will carry out a series of tasks including (but not limited to):
development of centralized study database and web-based Electronic Data Capture (EDC) system; generate
randomization schemes; design and implement quality control procedures for data collection/processing; train
site staff in the use of data collection and data management system; provide support in data masking, data
harmonization, and data sharing. Based on the existing data from the Thirty-Day Challenge Study, our aim 2
will perform causal analysis and AI modeling to explore causal relationships between baseline characteristics,
changes in alcohol use, changes in neuroimaging and microbiome biomarkers, and changes in neurocognitive
functions. This aim will build a baseline prediction model to predict change in alcohol use after the intervention
wit baseline information. Multi-scale dynamic modeling will be used to integrate voxel-level, tissue-level,
region-level, and lobe-level neuroimaging information for prediction of alcohol abstinence. We will also identify
the key changes in multimodal neuroimaging and microbiome biomarkers associated with levels of alcohol
abstinence. Direct effects of baseline characteristics on changes in neurocognitive functions, and their indirect
effects through changes in alcohol use, neuroimaging and microbiome biomarkers will be estimated and
tested. Our aim 3 will use the data from two new randomized clinical trials to validate and refine prediction
models developed in Aim 2 and build a personalized intervention recommendation tool. Cross-cohort validation
will be conducted in each of the two new clinical trials using established protocols and in the pooled data of the
two trials to validate and refine the baseline prediction models for predicting alcohol use reduction. Longitudinal
cross-cohort learning will be employed to create a uniform prediction model across three research projects and
build a personalized intervention recommendation tool.
数据科学核心(DSC)将为整个P01项目提供关键支持,以确保其成功
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhigang Li其他文献
Zhigang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhigang Li', 18)}}的其他基金
Data Science Core: Interventions to improve alcohol-related comorbidities along the gut-brain axis in persons with HIV infection
数据科学核心:改善 HIV 感染者肠脑轴酒精相关合并症的干预措施
- 批准号:
10304324 - 财政年份:2021
- 资助金额:
$ 22.93万 - 项目类别:
Mediation Analysis Methods to Model Human Microbiome Mediating Disease-Leading Causal Pathways in Children
用于模拟人类微生物组介导儿童疾病主导因果路径的中介分析方法
- 批准号:
10228590 - 财政年份:2018
- 资助金额:
$ 22.93万 - 项目类别:
Design and Analysis of Palliative Care Trials Evaluating Early Interventions
评估早期干预的姑息治疗试验的设计和分析
- 批准号:
8858688 - 财政年份:2014
- 资助金额:
$ 22.93万 - 项目类别:
Project 4: Evaluating mediation effects of the microbiome and epigenetics using high dimensional assays
项目 4:使用高维分析评估微生物组和表观遗传学的中介效应
- 批准号:
10091542 - 财政年份:2013
- 资助金额:
$ 22.93万 - 项目类别:














{{item.name}}会员




