Integrating Machine Learning and Genomic Approaches to Understand Cerebral Small Vessel Disease Pathogenesis from White Matter Hyperintensity Patterns
整合机器学习和基因组方法从白质高信号模式了解脑小血管疾病的发病机制
基本信息
- 批准号:10682419
- 负责人:
- 金额:$ 17.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAlzheimer&aposs DiseaseAmyloid depositionArchivesArteriesArteriolosclerosesAwardBioinformaticsBiologicalBiologyBlood VesselsBrainCategoriesCerebral Amyloid AngiopathyCerebral hemisphere hemorrhageCerebral small vessel diseaseCerebrovascular DisordersCerebrovascular PhysiologyClinicalCluster AnalysisComplexComputational TechniqueDataData SetDementiaDetectionDevelopmentDevelopment PlansDiseaseDisease ProgressionDistalElderlyEnvironmentEthnic OriginEtiologyFailureFunctional disorderGenesGeneticGenetic DeterminismGenetic RiskGenetic VariationGenomic approachGenotypeGoalsGrantHeritabilityHeterogeneityHypertensionImageImpaired cognitionIndividualInformaticsInterventionInvestigationIschemic StrokeK-Series Research Career ProgramsKnowledgeLobarLocationLongitudinal StudiesMachine LearningMagnetic Resonance ImagingMapsMentorshipMethodsMicrovascular DysfunctionNeurologicNeurologistPathogenesisPathogenicityPathologicPathologic ProcessesPathologyPathway interactionsPatternPhenotypePlayPopulationPreventionProcessRaceRadiology SpecialtyResearchResearch PersonnelResearch ProposalsResourcesRisk FactorsRoleStatistical MethodsStrokeStroke preventionTestingTrainingUniversitiesValidationVariantVentricularWashingtonWhite Matter Hyperintensityarteriolebiobankbioinformatics toolbrain parenchymacareercohortdesigndisorder subtypeeffective therapygenetic analysisgenetic associationgenetic variantgenome wide association studygenome-widehypertension controlimaging biomarkerimaging geneticsimprovedinnovationinsightinterdisciplinary approachmachine learning methodmedical schoolsmultidisciplinarynervous system disorderneuroimagingnew therapeutic targetnovelpatient populationpopulation basedprogramsrisk variantsegregationserial imagingstroke therapysuccesstherapeutic developmenttooltreatment strategyunsupervised learning
项目摘要
PROJECT SUMMARY
As a neurointensivist and neurologist at Washington University School of Medicine in St. Louis (WUSM), my
career goal is to develop an independent research program as a computational biologist capable of using
advanced bioinformatics and statistical methods to integrate analysis of large-scale neuroimaging and genetic
data, with the aim of deepening understanding of the biological mechanisms influencing cerebral small vessel
disease (SVD) and identifying new targets for therapeutic development. As a first step towards this goal, I have
designed an innovative proposal that combine machine-learning (ML) methods and integrated imaging genetic
analyses of large-scale neuroimaging and genetic data to improve characterization of SVD disease mechanisms.
The clinical, imaging, and etiologic heterogeneity of SVD have impeded efforts to uncover the
pathophysiology of this common and debilitating neurological disease. White matter hyperintensities (WMH), a
major imaging endpoint of SVD, are comprised of multiple SVD pathologic processes. Growing evidence
suggests location-specific vulnerability of brain parenchyma to different underlying SVD pathologic processes,
in which spatially localized WMH patterns may reflect distinct SVD etiologies. Characterizing WMH spatial
pattern variations in SVD will not only provide insights into underlying pathogenesis, such as vascular amyloid
deposition, arteriolosclerosis, and other less well defined or as-yet unknown disease mechanisms, but also lead
to creation of novel imaging biomarkers of these SVD pathologic processes. This proposal addresses a key
inadequacy, as existing WMH pattern definitions are determined empirically and cannot distinguish overlapping
SVD etiologies and risk factors. In this proposal, I aim to capture WMH spatial pattern variations that reflect
distinct SVD etiologies in an unbiased manner, by applying clustering analysis/ML methods to structural MRI
data to create novel etiology-specific SVD imaging phenotypes. Moreover, given that genetics influence the
variance of WMH, I will integrate genetic analyses of these WMH patterns to uncover novel mechanisms that
influence SVD pathogenesis. My preliminary data demonstrate the feasibility of identifying data-driven WMH
spatial pattern variations, which are specific to distinct SVD etiologies, and allow detection of genetic risk variants
that may help inform SVD pathologic processes.
My career plan leverages the extensive resources and exceptional environments at WUSM, under the
guidance of a multidisciplinary mentorship team with expertise across diverse fields including cerebrovascular
physiology, neuroimaging, informatics, genetics, and machine learning (Drs. Jin-Moo Lee, Daniel Marcus, Carlos
Cruchaga and Yasheng Chen). In this Career Development Award, I propose to: 1) determine distinct WMH
spatial patterns that can discriminate underlying SVD pathology and/or risk factors by applying pattern analysis
ML methods to structural MRI data from three unique cohorts (n=2,710) enriched for different SVD pathologies
(Aim 1a), and examining if the ML-defined WMH patterns segregate individuals by well-defined SVD risk factors
as biologic validation (Aim 1b), and 2) identify genetic variants (Aim 2a) associated with WMH patterns that
reflect diverse pathologic processes influencing SVD using genome wide association and gene-based analyses;
replicate the top variants (Aim 2b) in an independent population-based cohort (n=21,708); and use advanced
bioinformatics tools to uncover new biologic pathways associated with WMH spatial patterns (Aim 2c).
This research proposal and accompanying development plan with focused training in machine learning,
neuroimaging, and multivariate methods for integrated imaging genetics analysis, will build on my background
in genetics towards a career investigating cerebrovascular disorders using translational bioinformatics. This
Award will provide me with the necessary training to evolve into an independent investigator with a computational
research program that can integrate large imaging and genetics datasets to derive results that are highly relevant
to the prevention and treatment of cerebrovascular disease in my clinical patient population.
项目总结
作为圣路易斯华盛顿大学医学院(WUSM)的一名神经强化专家和神经学家,我的
职业目标是作为一名计算生物学家开发一个独立的研究计划,能够使用
先进的生物信息学和统计方法集成大规模神经成像和基因分析
数据,目的是加深对影响脑小血管的生物学机制的了解
疾病(SVD)和确定治疗发展的新靶点。作为迈向这个目标的第一步,我已经
设计了一种将机器学习(ML)方法和集成成像遗传技术相结合的创新方案
对大规模神经成像和遗传数据的分析,以改善SVD疾病机制的特征。
SVD的临床、影像和病因学的异质性阻碍了揭示
这种常见的、使人衰弱的神经疾病的病理生理学。白质高强度(WMH),a
SVD的主要影像终点由多个SVD病理过程组成。越来越多的证据
提示脑实质对不同潜在的SVD病理过程具有特定位置的脆弱性,
其中空间局域化的WMH模式可以反映不同的SVD病因。描述WMH空间
SVD的模式变化不仅将提供对潜在发病机制的洞察,如血管淀粉样蛋白
沉积、动脉硬化和其他不太清楚或尚不清楚的疾病机制,但也导致
创建这些SVD病理过程的新的成像生物标记物。这项建议解决了一个关键问题
不充分,因为现有的WMH模式定义是根据经验确定的,无法区分重叠
Svd的病因和危险因素。在这项建议中,我的目标是捕捉反映WMH空间模式变化的
通过将聚类分析/ML方法应用于结构MRI,以无偏倚的方式识别SVD病因
创建新的病因学特定的SVD成像表型的数据。此外,考虑到遗传因素对
WMH的变异,我将整合这些WMH模式的遗传分析,以揭示新的机制
影响SVD发病机制。我的初步数据证明了识别数据驱动的WMH的可行性
空间模式变异,专用于不同的SVD病因,并允许检测遗传风险变异
这可能有助于了解SVD的病理过程。
我的职业生涯规划利用了WUSM的广泛资源和特殊环境,在
拥有包括脑血管在内的不同领域的专业知识的多学科指导团队的指导
生理学、神经成像、信息学、遗传学和机器学习(李振武博士、丹尼尔·马库斯博士、卡洛斯博士
Cruchaga和Yaseng Chen)。在这个职业发展奖中,我建议:1)确定不同的WMH
通过应用模式分析可以区分潜在的SVD病理和/或风险因素的空间模式
ML方法对三个不同SVD病理丰富的独特队列(n=2,710)的MRI数据进行结构化
(目标1a),并检查ML定义的WMH模式是否通过明确定义的SVD风险因素将个体隔离
作为生物验证(目标1b),以及2)识别与WMH模式相关联的遗传变异(目标2a
使用全基因组关联和基于基因的分析来反映影响SVD的不同病理过程;
在一个独立的基于人群的队列(n=21,708)中复制顶级变种(Aim 2b);并使用高级
生物信息学工具,以发现与WMH空间模式相关的新生物途径(目标2c)。
这项研究建议和伴随着机器学习中的重点训练的发展计划,
神经成像和用于综合成像遗传学分析的多变量方法将建立在我的背景之上
利用翻译生物信息学研究脑血管疾病的遗传学方向。这
获奖将为我提供必要的培训,使我成为一名具有计算能力的独立调查员
可以集成大型成像和遗传学数据集以得出高度相关的结果的研究计划
在我的临床患者群体中预防和治疗脑血管疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chia-Ling Phuah其他文献
Chia-Ling Phuah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chia-Ling Phuah', 18)}}的其他基金
Integrating Machine Learning and Genomic Approaches to Understand Cerebral Small Vessel Disease Pathogenesis from White Matter Hyperintensity Patterns
整合机器学习和基因组方法从白质高信号模式了解脑小血管疾病的发病机制
- 批准号:
10468866 - 财政年份:2019
- 资助金额:
$ 17.56万 - 项目类别:
Integrating Machine Learning and Genomic Approaches to Understand Cerebral Small Vessel Disease Pathogenesis from White Matter Hyperintensity Patterns
整合机器学习和基因组方法从白质高信号模式了解脑小血管疾病的发病机制
- 批准号:
10239047 - 财政年份:2019
- 资助金额:
$ 17.56万 - 项目类别:
Integrating Machine Learning and Genomic Approaches to Understand Cerebral Small Vessel Disease Pathogenesis from White Matter Hyperintensity Patterns
整合机器学习和基因组方法从白质高信号模式了解脑小血管疾病的发病机制
- 批准号:
10022173 - 财政年份:2019
- 资助金额:
$ 17.56万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.56万 - 项目类别:
Research Grant