Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动的设计可减轻冠状动脉搭桥术后静脉移植失败的风险
基本信息
- 批准号:10683327
- 负责人:
- 金额:$ 70.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationAnimalsBiocompatible MaterialsBiologicalBiologyBlood VesselsCardiovascular systemCaringCarotid ArteriesCellsClinicalComputer ModelsComputer softwareComputing MethodologiesCoronary ArteriosclerosisCoronary Artery BypassCoronary VesselsDataData SetDevice DesignsDevicesDiffuseDisease ProgressionElastomersEstimation TechniquesFailureFunding AgencyGeometryGoalsGrowthHistologyHumanImageIn VitroInflammationJointsLiquid substanceMechanicsMediatingMedicalMedical ImagingMethodologyModelingMorbidity - disease rateOperative Surgical ProceduresOryctolagus cuniculusParameter EstimationPatientsPerformancePostoperative PeriodPreclinical TestingPreventionProcessPropertyPublicationsSaphenous VeinSheepSolidStenosisStressStructureStructure of jugular veinTechniquesTestingTissue GraftsTissuesUncertaintyVein graftVeinsVenousanimal datadesignelastomericexperimental studygraft failurehemodynamicshigh risk populationhuman datahuman studyimproved outcomein silicoin vivoinnovationmanufacturemechanical stimulusmortalitymultidisciplinarynovelopen sourcepredictive modelingpreventresponsesimulationstandard caretranscriptome sequencingtranslational approach
项目摘要
Coronary artery bypass graft (CABG) surgery is the gold standard treatment for patients with diffuse, multi-vessel
coronary artery disease, with >350,000 surgeries performed each year in the USA. Due to the limited availability
of arterial grafts, saphenous vein grafts (SVG) are used in >95% of patients. Despite advances in surgical
technique and post-surgical management, SVG stenoses and occlusions occur at alarmingly high rates: 5-10%
of SVGs fail within one month after surgery, 25% within 12-18 months, and 40-50% within 10 years, resulting in
significant morbidity and mortality. Currently, there are no clinically available means to prevent SVG failure
following CABG beyond optimal medical therapy. Mechanical stimuli, including hemodynamic loads and
associated vessel wall deformations and stresses, are known to contribute to the cell-mediated structural
changes leading to SVG failure, yet, the precise mechanobiological mechanisms remain poorly understood. In
preliminary studies, we quantified mechanical stimuli in CABG simulations, identifying hemodynamic markers
associated with SVG stenosis. Importantly, we introduced the first computational growth and remodeling (G&R)
framework that can delineate adaptive vs. maladaptive responses of vein grafts, incorporating optimization to
accelerate parameter estimation. With this model, we then predicted that an external bioabsorbable sheath,
present over a short post-operative period, could mitigate intermediate-term graft failure. Our scientific premise
is supported by a preliminary in vivo ovine study. Our collaborative multi-disciplinary team will address this
critical unmet need through tightly integrated computational model-driven design, experimental, and
clinical approaches to uncover arterialization mechanisms and evaluate a novel bioabsorbable sheath
device for SVG failure prevention. In Aim 1, we will develop the first G&R model of SVG arterialization
incorporating inflammation. We will inform and validate the model with data from a longitudinal rabbit surgical
study, in which we will perform surgery to interpose a jugular graft in the carotid artery. In Aim 2, we will
synthesize these data and models into a first-of-its-kind 3D fluid-solid-growth (FSG) simulator to predict SVG
disease progression, validated against an independent subset of animal data. To further inform our models, we
will characterize human SVG tissue with biaxial tissue testing. We will increase rigor by incorporating uncertainty
quantification. In Aim 3, we will design, optimize and evaluate a novel external sheath device for the prevention
of SVG failure, integrating in silico and large animal in vivo studies. We will rapidly 3D print sheath designs from
a unique class of bioabsorbable elastomeric materials with tunable degradation rates. This proposal brings
together a multidisciplinary team with expertise in cardiovascular simulation, vascular mechanobiology,
optimization, imaging, biomaterials, additive manufacturing, and clinical cardiovascular care as well as a track
record of joint publications, funding, and open-source software. Our ultimate goal is to improve outcomes of
CABG patients via prediction and prevention of SVG failure, for whom there are limited treatment options.
冠状动脉旁路移植术(CABG)是治疗弥漫性、多支血管病变患者的金标准。
冠状动脉疾病,在美国每年进行超过350,000例手术。由于供应有限,
在动脉移植物中,隐静脉移植物(SVG)用于>95%的患者。尽管外科手术取得了进步,
技术和术后管理,SVG狭窄和闭塞发生率高得惊人:5-10%
的SVG在术后1个月内失效,25%在12-18个月内失效,40-50%在10年内失效,导致
严重的发病率和死亡率。目前,临床上还没有预防SVG故障的方法
冠状动脉旁路移植术后超过最佳药物治疗。机械刺激,包括血流动力学负荷和
相关的血管壁变形和应力,已知有助于细胞介导的结构损伤。
虽然这些变化导致SVG失效,但精确的机械生物学机制仍然知之甚少。在
初步研究中,我们量化了CABG模拟中的机械刺激,
与SVG狭窄相关。重要的是,我们引入了第一个计算增长和重塑(G&R)
该框架可以描述静脉移植物的适应性与适应不良反应,
加速参数估计。利用该模型,我们预测外部生物可吸收鞘管,
在术后短期内出现,可以减轻中期移植物失败。我们的科学前提
得到初步的绵羊体内研究的支持。我们的多学科协作团队将解决这一问题
通过紧密集成的计算模型驱动设计、实验和
揭示动脉化机制和评价新型生物可吸收鞘管的临床方法
SVG故障预防装置。在目标1中,我们将开发SVG动脉化的第一个G&R模型
并伴有炎症。我们将告知和验证模型的数据,从纵向兔手术
在这项研究中,我们将在颈动脉中进行颈静脉移植手术。在目标2中,我们将
将这些数据和模型合成为第一个3D流固生长(FSG)模拟器,以预测SVG
疾病进展,根据动物数据的独立子集进行验证。为了进一步了解我们的模型,我们
将通过双轴组织试验表征人体SVG组织。我们将通过引入不确定性来增加严谨性
量化在目标3中,我们将设计、优化和评价一种新型外鞘装置,
SVG失败,整合在硅片和大型动物体内研究。我们将快速3D打印护套设计,
一类独特的生物可吸收弹性材料,具有可调的降解速率。这项提议带来了
在心血管模拟,血管机械生物学,
优化、成像、生物材料、增材制造和临床心血管护理以及跟踪
联合出版物、资金和开源软件的记录。我们的最终目标是改善
CABG患者通过预测和预防SVG失败,对他们来说,治疗选择有限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jay D. Humphrey其他文献
A Computational Framework to Predict and Understand in situ Heart Valve Tissue Engineering
- DOI:
10.1080/24748706.2021.1900703 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Elmer Middendorp;Marcos Latorre;Jason M. Szafron;Frank P.T. Baaijens;Jay D. Humphrey;Sandra Loerakker - 通讯作者:
Sandra Loerakker
ブレインサイエンス・レビュー2004
脑科学评论 2004
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Daisuke Mori;Guido David;Jay D. Humphrey;James E. Moore Jr.;Miho Terunuma;平田 雅人 - 通讯作者:
平田 雅人
Multi-Scale Multi-Cell Computational Model of Inflammation-Mediated Aortic Remodeling in Hypertension
- DOI:
10.1007/s10439-025-03685-3 - 发表时间:
2025-02-04 - 期刊:
- 影响因子:5.400
- 作者:
Ana C. Estrada;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Journal of Mechanics of Materials and Structures SPONTANEOUS UNWINDING OF A LABILE DOMAIN IN A COLLAGEN TRIPLE HELIX
材料与结构力学杂志 胶原三螺旋中不稳定域的自发展开
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Krishnakumar M. Ravikumar;Jay D. Humphrey;Wonmuk Hwang - 通讯作者:
Wonmuk Hwang
Altered mechanical behavior and properties of the human anterior lens capsule after cataract surgery.
白内障手术后人类晶状体前囊的机械行为和特性发生改变。
- DOI:
10.1016/j.exer.2009.06.001 - 发表时间:
2009 - 期刊:
- 影响因子:3.4
- 作者:
R. Pedrigi;J. Dziezyc;Jay D. Humphrey - 通讯作者:
Jay D. Humphrey
Jay D. Humphrey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jay D. Humphrey', 18)}}的其他基金
Computational model-driven design to mitigate vein graft failure after coronary artery bypass
计算模型驱动设计减轻冠状动脉搭桥术后静脉移植失败
- 批准号:
10539814 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10532786 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Modeling Multiscale Immuno-Mechanics in Aortic Disease
主动脉疾病的多尺度免疫力学建模
- 批准号:
10352581 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10184861 - 财政年份:2020
- 资助金额:
$ 70.08万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10376852 - 财政年份:2019
- 资助金额:
$ 70.08万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10573756 - 财政年份:2019
- 资助金额:
$ 70.08万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
10132382 - 财政年份:2019
- 资助金额:
$ 70.08万 - 项目类别:
Smooth Muscle Cell Proliferation and Degradative Phenotype in Thoracic Aorta Aneurysm and Dissection
胸主动脉瘤和夹层中的平滑肌细胞增殖和降解表型
- 批准号:
9904189 - 财政年份:2019
- 资助金额:
$ 70.08万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 70.08万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 70.08万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 70.08万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 70.08万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 70.08万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 70.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 70.08万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 70.08万 - 项目类别:
Standard Grant