Quantitative approaches for mapping the real-time evolution of the gut microbiota
绘制肠道微生物群实时进化的定量方法
基本信息
- 批准号:10684953
- 负责人:
- 金额:$ 39.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAutomobile DrivingBiophysicsCellsCommunitiesComplexDataDevelopmentDietDiseaseEcosystemEvolutionFutureGeneticGenetic ModelsGerm-FreeGoalsHealthHomeHumanIn SituLibrariesLinkMapsMeasuresMethodsModelingMusMutationNatural SelectionsOceansPharmaceutical PreparationsPlayPopulationPopulation GeneticsPredispositionProcessRoleSamplingSeriesShapesSoilTaxonomyTherapeuticTimeWorkcomputerized toolsfecal transplantationfitnessgenetic variantgut bacteriagut metagenomegut microbiotain vivoinsightmicrobial communitymicrobiomemicrobiotapersonalized medicinepredictive modelingresistance mutationresponsesuccess
项目摘要
Microbial communities drive important biogeochemical cycles, from the ocean to the soil to the human gut. High
rates of cell turnover provide these ecosystems with an enormous potential for rapid evolutionary change: billions
of new mutations are produced within each of our gut microbiota every day. We and others have recently shown
that these genetic changes can sweep through resident populations of gut bacteria on timescales ranging from
a few months to a few days. This rapid pace of evolution is hypothesized to have important practical
consequences, from the spread of antibiotic resistance mutations to the success of fecal microbiome transplants
and other personalized therapies. Despite the potential importance of these effects, we currently know very little
about the evolutionary forces that operate within complex communities like the gut microbiota, or how they
influence (or are influenced by) the composition of the surrounding community. A central challenge is that we
lack a population genetic framework for predicting how mutations spread in communities with large numbers of
ecologically interacting strains. This limits our ability to predict how microbiota will evolve in response to
environmental perturbations such as drugs or diet, or to interpret functional changes that we observe in these
communities over time. My lab aims to address this gap in our understanding by combining biophysical and
population genetic modeling with the development of computational tools for measuring in situ evolution in both
natural and synthetic gut communities. Our long-term goal is to decipher the population genetic “rules” that
govern the short-term evolution of the gut microbiota, and to use these insights to guide future experimental and
therapeutic efforts. In the next five years, we will pursue this goal through a multi-pronged strategy: First, we will
develop new time-series methods for analyzing the trajectories of linked mutations in longitudinally sampled
human gut metagenomes. These methods will allow us to address key open questions about the strength and
duration of natural selection on sweeping genetic variants, and whether they are correlated with broader shifts
in taxonomic or functional composition. Second, we will develop new methods for leveraging widely deployed
transposon insertion libraries to measure the rates and fitness effects of spontaneous beneficial mutations in
vivo in ex-germ-free mice, and we will quantify for the first time how this landscape varies across species, diets,
and community contexts. Finally, to interpret these new data and to craft driving hypotheses, we will develop a
mechanistic modeling framework for predicting how ecological diversity influences short-term evolutionary
dynamics in highly diverse communities that compete for common metabolites. Together, this work will provide
unprecedented insight into the short-term evolution of our gut microbiota, and will constitute a crucial step toward
the development of truly predictive models of microbial community dynamics.
微生物群落驱动着重要的生物地球化学循环,从海洋到土壤再到人体肠道。高
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Eco-evolutionary feedbacks in the human gut microbiome.
- DOI:10.1038/s41467-023-42769-3
- 发表时间:2023-11-06
- 期刊:
- 影响因子:16.6
- 作者:Good, Benjamin H.;Rosenfeld, Layton B.
- 通讯作者:Rosenfeld, Layton B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin H Good其他文献
Within-host evolution of the gut microbiome
肠道微生物组的宿主内进化
- DOI:
10.1016/j.mib.2022.102258 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:7.500
- 作者:
Tanja Dapa;Daniel PGH Wong;Kimberly S Vasquez;Karina B Xavier;Kerwyn Casey Huang;Benjamin H Good - 通讯作者:
Benjamin H Good
Benjamin H Good的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
- 批准号:
EP/Y031067/1 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Research Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
Molecular Epidemiology of Antibiotic Resistance in Clostridioides difficile
艰难梭菌抗生素耐药性的分子流行病学
- 批准号:
502587 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307223 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Standard Grant
The roles of a universally conserved DNA-and RNA-binding domain in controlling MRSA virulence and antibiotic resistance
普遍保守的 DNA 和 RNA 结合域在控制 MRSA 毒力和抗生素耐药性中的作用
- 批准号:
MR/Y013131/1 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Research Grant
Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
- 批准号:
MR/X009580/1 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Fellowship
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 39.21万 - 项目类别:
Continuing Grant
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Operating Grants
The spread of antibiotic resistance in bacteria-plasmid networks
抗生素耐药性在细菌-质粒网络中的传播
- 批准号:
BB/X010473/1 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别:
Fellowship
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 39.21万 - 项目类别: