SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
基本信息
- 批准号:10685378
- 负责人:
- 金额:$ 29.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAffectAlgorithmic SoftwareAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer’s disease biomarkerAmyloid ProteinsArtificial IntelligenceBindingBiological MarkersBiosensing TechniquesBiosensorBloodBody FluidsCessation of lifeCollaborationsDataData ScientistDementiaDetectionDevicesDrug IndustryElderlyEnzyme-Linked Immunosorbent AssayFeedbackFiber OpticsGeneral HospitalsGoalsHealthHumanImmunohistochemistryImpaired cognitionInterdisciplinary StudyKnowledgeLearningMachine LearningMagnetic Resonance ImagingMass Spectrum AnalysisMassachusettsMeasuresMechanicsMemoryMethodsMiningMissionModalityModelingNanotechnologyNeurodegenerative DisordersOpticsOutputPatientsPerformancePersonal SatisfactionPersonalityPositioning AttributeRaman Spectrum AnalysisResearchResearch PersonnelSalivaScientistSensitivity and SpecificitySignal TransductionSoftware ToolsSomatotypeSource CodeStatistical Data InterpretationSystemTechniquesTrainingWeightWestern BlottingWorkanalytical toolapolipoprotein E-4artificial intelligence algorithmbiomarker discoverybiomarker identificationcantilevercostdata repositorydeep learning algorithmdesigndesign verificationdetection methoddetection platformeffectiveness evaluationflexibilityhealth care service organizationheterogenous dataimprovedinnovationinsightmachine learning frameworkmachine learning methodmedical schoolsminimally invasivemultimodalitynanosensorsnoveloptical fiberphotonicsprogramssensorspecific biomarkerstau Proteinstomographytwo-dimensionalwaveguide
项目摘要
We propose a new research paradigm aimed at addressing scientific questions in both biosensing and
machine learning for the early prediction of Alzheimer's disease (AD), and at solving a grand challenge in
the identification of minimally-invasive AD biomarkers in tear, saliva, and blood. Our goal is to develop a
novel and minimally-invasive system that integrates a multimodal biosensing platform and a machine
learning framework, which synergistically work together to significantly enhance the detection accuracy.
The program will pioneer a novel Multimodal Optical, Mechanical, Electrochemical Nano-sensor with Twodimensional
material Amplification (MOMENTA) platform for sensitive and selective detection of AD
biomarkers. The sensor outputs are used for training the new Hierarchical Multimodal Machine Learning
(HMML) framework, which not only automatically integrates the heterogeneous data from different
modalities but also ranks the importance of different biosensors and biomarkers for AD prediction.
Moreover, the framework is able to identify potential new biomarkers based on a statistical analysis of the
learned weights on the input signals and provide feedback information to further improve the MOMENTA
platform design. This interdisciplinary research brings together materials scientists who create new twodimensional
(2D) material platforms for sensor enhancement, nanotechnology and device experts who
advance chip-scale sensor platforms, data scientists who analyze data with machine learning methods to
target early prediction of AD, and AD experts who help to identify potentially new AD biomarkers. The
machine-learning-enhanced multi-modal sensor system will not only offer major performance boost
compared to state-of-the-art, but also yield critical insights on new biomarker discovery for AD diagnosis at
an early stage.
我们提出了一个新的研究范式,旨在解决生物传感和
机器学习用于阿尔茨海默病(AD)的早期预测,并在解决一个巨大的挑战,
在泪液、唾液和血液中鉴定微创AD生物标志物。我们的目标是发展一个
一种新型的微创系统,它集成了多模态生物传感平台和机器,
学习框架,协同工作,显着提高检测精度。
该计划将开创一种新颖的多模式光学,机械,电化学纳米传感器与二维
材料扩增(MOMENTA)平台,用于AD的灵敏和选择性检测
生物标志物。传感器输出用于训练新的分层多模态机器学习
(HMML)框架,它不仅可以自动集成来自不同的异构数据,
模式,而且还对不同生物传感器和生物标志物对于AD预测的重要性进行排名。
此外,该框架能够基于对生物标志物的统计分析来识别潜在的新生物标志物。
学习输入信号的权重,并提供反馈信息,以进一步提高动量
平台设计这种跨学科的研究汇集了材料科学家谁创造新的二维
(2D)传感器增强材料平台,纳米技术和设备专家,
先进的芯片级传感器平台,数据科学家用机器学习方法分析数据,
针对AD的早期预测,以及帮助识别潜在的新AD生物标志物的AD专家。的
机器学习增强的多模态传感器系统不仅将提供重大的性能提升,
与最先进的技术相比,还对AD诊断的新生物标志物发现产生了重要的见解,
早期阶段。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AUTOMED: Automated Medical Risk Predictive Modeling on Electronic Health Records
- DOI:10.1109/bibm55620.2022.9995209
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Suhan Cui;Jiaqi Wang;Xinning Gui;Ting Wang;Fenglong Ma
- 通讯作者:Suhan Cui;Jiaqi Wang;Xinning Gui;Ting Wang;Fenglong Ma
ClinicalRisk: A New Therapy-related Clinical Trial Dataset for Predicting Trial Status and Failure Reasons.
ClinicalRisk:用于预测试验状态和失败原因的新治疗相关临床试验数据集。
- DOI:10.1145/3583780.3615113
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Luo,Junyu;Qiao,Zhi;Glass,Lucas;Xiao,Cao;Ma,Fenglong
- 通讯作者:Ma,Fenglong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juejun Hu其他文献
Juejun Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juejun Hu', 18)}}的其他基金
SCH: AI-Enhanced Multimodal Sensor-on-a-chip for Alzheimer's Disease Detection
SCH:用于阿尔茨海默病检测的人工智能增强型多模态芯片传感器
- 批准号:
10437992 - 财政年份:2022
- 资助金额:
$ 29.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.77万 - 项目类别:
Research Grant