Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers

改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物

基本信息

  • 批准号:
    10685325
  • 负责人:
  • 金额:
    $ 66.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-23 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Subarachnoid hemorrhage (SAH) is a devasting acute neurological disease that remains a major cause of premature mortality. SAH is most caused by incidental rupture of an intracranial aneurysm (ICA). The mortality rate of aneurysm rupture can reach as high as 40% within the first week of incidence. Even if the aneurysm is treated in a timely manner, the chance of moderate to severe brain damage is 20-35%. Endovascular coil embolization is the current gold-standard, minimally invasive therapy of ICAs; however, emerging clinical challenges of coil embolization are unsatisfactory aneurysm recurrence rates: ~44% by 5-6 years after the initial coil therapy (of which more than 50% requiring re-treatment), and suboptimal complete occlusion, especially for treating wide-necked ICAs and/or aneurysms with a complex 3D geometry. Thus, there is a need for a durable device to treat unruptured ICAs that targets patient-specific aneurysms and intra-aneurysmal circulation and provides long-lasting complete occlusion. Our research objectives of this project are to: 1) design and fabricate personalized embolic devices for treating saccular, bifurcated IACs using additive manufacturing and a combined experimental/biomechanical approach, and 2) provide a holistic biomechanical and hemodynamic comparison between our device and other selected endovascular embolic techniques. This proposal builds upon the assembled preliminary data, and leverages Dr. Lee’s experience with tissue biomechanics and in-silico modeling, in collaboration with polymer science and additive manufacturing researchers at the University of Oklahoma, clinical and neurosurgical expertise of clinicians at Indiana University – Medicine, and micro-device and catheter expert at Purdue. Specifically, we propose to design, develop, and evaluate patient-specific SMP embolic devices using 3D printing-based polymer fabrication. Our embolic devices are designated to target personalized aneurysm filling and maximize the rate of long-lasting complete occlusion. Next, through in-vitro flow loop testbed and in-vivo small animal studies, the efficacy and aneurysm occlusion of our personalized embolic devices will be systematically evaluated in comparison to the clinical gold standard as well as three other contemporary embolic methods. The endpoint of this project will be a cutting-edge solution for ICA embolization, that uses fundamental information on aneurysms based on holistic biomechanical and hemodynamic analyses – allowing individual-optimized aneurysm filling to achieve immediate & long-term complete occlusion and reduce aneurysm recurrence. Collectively, our developments will serve as a logical first step toward attaining our long- term goal to advance the state of the art in translational medicine by facilitating personalized, preventive management of unruptured ICAs and reduce aneurysm rupture-induced hemorrhagic strokes.
项目总结/文摘

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets
使用 CellScale BioTester 和猪三尖瓣小叶的本构模型研究样本尺寸如何影响双轴机械特性
  • DOI:
    10.1016/j.jbiomech.2023.111829
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Laurence, Devin W.;Wang, Shuodao;Xiao, Rui;Qian, Jin;Mir, Arshid;Burkhart, Harold M.;Holzapfel, Gerhard A.;Lee, Chung-Hao
  • 通讯作者:
    Lee, Chung-Hao
MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
MetaNO:如何转移您学习隐藏物理的知识。
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
  • DOI:
    10.1016/j.actbio.2022.07.036
  • 发表时间:
    2022-09-15
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Pineda-Castillo, Sergio A.;Aparicio-Ruiz, Santiago;Burns, Madison M.;Laurence, Devin W.;Bradshaw, Elizabeth;Gu, Tingting;Holzapfel, Gerhard A.;Lee, Chung-Hao
  • 通讯作者:
    Lee, Chung-Hao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chung-Hao Lee其他文献

Chung-Hao Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 66.03万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 66.03万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 66.03万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 66.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了