Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
基本信息
- 批准号:10685325
- 负责人:
- 金额:$ 66.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-23 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccountingAcuteAffectAmericanAneurysmAnimalsArteriesBiomechanicsBrainBrain AneurysmsBrain InjuriesBrain hemorrhageCalibrationCathetersCause of DeathCirculationClassificationClinicalClinical TreatmentCollaborationsComplexDataDevelopmentDevicesDilatation - actionEffectivenessElastasesElementsEvaluation StudiesExpenditureGelGeometryGoalsHospitalsImplantIn VitroIncidenceIndianaIndividualIntracranial AneurysmLeftLiquid substanceMechanicsMedicineMemoryMethodsModelingMorphologyNeckNew ZealandOklahomaOryctolagus cuniculusPatientsPerformancePolymersPorosityPremature MortalityPreventivePrintingProcessPropertyProtocols documentationRecoveryRecurrenceReportingResearchResearch PersonnelResidual stateRetreatmentRuptureRuptured AneurysmSamplingScienceShapesStrokeStructureSubarachnoid HemorrhageSystemTechniquesTestingTherapeutic EmbolizationTissuesTreatment outcomeUnited StatesUniversitiesUrethanecompare effectivenessdesigndisabilityexperienceexperimental studyfabricationhemodynamicsimprovedimproved outcomein silicoin vivoiterative designmanufacturemanufacturing processmechanical propertiesmicrodeviceminimally invasivemortalitynervous system disorderneurosurgerynovelpreventprophylacticthrombogenesistranslational medicine
项目摘要
Project Summary/Abstract
Subarachnoid hemorrhage (SAH) is a devasting acute neurological disease that remains a major cause of
premature mortality. SAH is most caused by incidental rupture of an intracranial aneurysm (ICA). The mortality
rate of aneurysm rupture can reach as high as 40% within the first week of incidence. Even if the aneurysm is
treated in a timely manner, the chance of moderate to severe brain damage is 20-35%. Endovascular coil
embolization is the current gold-standard, minimally invasive therapy of ICAs; however, emerging clinical
challenges of coil embolization are unsatisfactory aneurysm recurrence rates: ~44% by 5-6 years after the initial
coil therapy (of which more than 50% requiring re-treatment), and suboptimal complete occlusion, especially for
treating wide-necked ICAs and/or aneurysms with a complex 3D geometry. Thus, there is a need for a durable
device to treat unruptured ICAs that targets patient-specific aneurysms and intra-aneurysmal circulation and
provides long-lasting complete occlusion. Our research objectives of this project are to: 1) design and fabricate
personalized embolic devices for treating saccular, bifurcated IACs using additive manufacturing and a combined
experimental/biomechanical approach, and 2) provide a holistic biomechanical and hemodynamic comparison
between our device and other selected endovascular embolic techniques. This proposal builds upon the
assembled preliminary data, and leverages Dr. Lee’s experience with tissue biomechanics and in-silico
modeling, in collaboration with polymer science and additive manufacturing researchers at the University of
Oklahoma, clinical and neurosurgical expertise of clinicians at Indiana University – Medicine, and micro-device
and catheter expert at Purdue. Specifically, we propose to design, develop, and evaluate patient-specific SMP
embolic devices using 3D printing-based polymer fabrication. Our embolic devices are designated to target
personalized aneurysm filling and maximize the rate of long-lasting complete occlusion. Next, through in-vitro
flow loop testbed and in-vivo small animal studies, the efficacy and aneurysm occlusion of our personalized
embolic devices will be systematically evaluated in comparison to the clinical gold standard as well as three other
contemporary embolic methods. The endpoint of this project will be a cutting-edge solution for ICA embolization,
that uses fundamental information on aneurysms based on holistic biomechanical and hemodynamic analyses
– allowing individual-optimized aneurysm filling to achieve immediate & long-term complete occlusion and reduce
aneurysm recurrence. Collectively, our developments will serve as a logical first step toward attaining our long-
term goal to advance the state of the art in translational medicine by facilitating personalized, preventive
management of unruptured ICAs and reduce aneurysm rupture-induced hemorrhagic strokes.
项目摘要/摘要
蛛网膜下腔出血(SAH)是一种毁灭性的急性神经系统疾病,至今仍是
过早死亡。蛛网膜下腔出血多由颅内动脉瘤(ICA)偶发破裂引起。死亡
在发病的第一周内,动脉瘤破裂的比率可高达40%。即使动脉瘤是
如果及时治疗,出现中到重度脑损伤的几率为20%-35%。血管内线圈
栓塞术是目前ICAS的金标准微创治疗方法;然而,新兴的临床
弹簧圈栓塞术的挑战是不能令人满意的动脉瘤复发率:初次栓塞后5-6年复发率约为44%
弹簧圈治疗(其中50%以上需要重新治疗),以及次优完全闭塞,特别是
治疗具有复杂3D几何结构的宽颈颈内动脉和/或动脉瘤。因此,需要一种持久的
治疗针对患者特定动脉瘤和动脉瘤内循环的未破裂ICA的设备和
提供持久的完全遮挡。本课题的研究目标是:1)设计和制造
使用添加剂制造和组合的个人化栓塞器治疗球状、分叉型IAC
实验/生物力学方法,以及2)提供整体生物力学和血流动力学比较
我们的设备和其他精选的血管内栓塞术之间存在着很大的差距。这项建议建立在
收集初步数据,并利用Lee博士在组织生物力学和硅技术方面的经验
建模,与宾夕法尼亚大学聚合物科学和添加剂制造研究人员合作
印第安纳大学临床医生的临床和神经外科专业知识-医学和微型设备
普渡大学的导管专家。具体地说,我们建议设计、开发和评估患者特定的SMP
栓塞器使用基于3D打印的聚合物制造。我们的栓塞器被指定为
个性化的动脉瘤填充,最大限度地提高长期完全闭塞率。接下来,通过体外培养
流动环试验台和体内小动物研究,我们的个性化的动脉瘤闭塞的疗效
将对照临床黄金标准以及其他三种标准对栓塞器进行系统评估
现代的栓塞法。该项目的终点将是ICA栓塞术的尖端解决方案,
它使用基于整体生物力学和血液动力学分析的关于动脉瘤的基本信息
-允许针对个体进行优化的动脉瘤填充,以实现即时和长期完全闭塞并减少
动脉瘤复发。总体而言,我们的发展将是实现我们长期-
学期目标是通过促进个性化、预防性的发展来促进转化医学的最新发展
处理未破裂的ICA,减少动脉瘤破裂导致的出血性卒中。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets
使用 CellScale BioTester 和猪三尖瓣小叶的本构模型研究样本尺寸如何影响双轴机械特性
- DOI:10.1016/j.jbiomech.2023.111829
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Laurence, Devin W.;Wang, Shuodao;Xiao, Rui;Qian, Jin;Mir, Arshid;Burkhart, Harold M.;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
MetaNO:如何转移您学习隐藏物理的知识。
- DOI:10.1016/j.cma.2023.116280
- 发表时间:2023
- 期刊:
- 影响因子:7.2
- 作者:Zhang,Lu;You,Huaiqian;Gao,Tian;Yu,Mo;Lee,Chung-Hao;Yu,Yue
- 通讯作者:Yu,Yue
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
- DOI:10.1016/j.actbio.2022.07.036
- 发表时间:2022-09-15
- 期刊:
- 影响因子:9.7
- 作者:Pineda-Castillo, Sergio A.;Aparicio-Ruiz, Santiago;Burns, Madison M.;Laurence, Devin W.;Bradshaw, Elizabeth;Gu, Tingting;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung-Hao Lee其他文献
Chung-Hao Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 66.03万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant














{{item.name}}会员




