Improving outcomes in endovascular treatment of intracranial aneurysms: Combining additive manufacturing, in-silico modeling, and shape memory polymers
改善颅内动脉瘤血管内治疗的效果:结合增材制造、计算机建模和形状记忆聚合物
基本信息
- 批准号:10685325
- 负责人:
- 金额:$ 66.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-23 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccountingAcuteAffectAmericanAneurysmAnimalsArteriesBiomechanicsBrainBrain AneurysmsBrain InjuriesBrain hemorrhageCalibrationCathetersCause of DeathCirculationClassificationClinicalClinical TreatmentCollaborationsComplexDataDevelopmentDevicesDilatation - actionEffectivenessElastasesElementsEvaluation StudiesExpenditureGelGeometryGoalsHospitalsImplantIn VitroIncidenceIndianaIndividualIntracranial AneurysmLeftLiquid substanceMechanicsMedicineMemoryMethodsModelingMorphologyNeckNew ZealandOklahomaOryctolagus cuniculusPatientsPerformancePolymersPorosityPremature MortalityPreventivePrintingProcessPropertyProtocols documentationRecoveryRecurrenceReportingResearchResearch PersonnelResidual stateRetreatmentRuptureRuptured AneurysmSamplingScienceShapesStrokeStructureSubarachnoid HemorrhageSystemTechniquesTestingTherapeutic EmbolizationTissuesTreatment outcomeUnited StatesUniversitiesUrethanecompare effectivenessdesigndisabilityexperienceexperimental studyfabricationhemodynamicsimprovedimproved outcomein silicoin vivoiterative designmanufacturemanufacturing processmechanical propertiesmicrodeviceminimally invasivemortalitynervous system disorderneurosurgerynovelpreventprophylacticthrombogenesistranslational medicine
项目摘要
Project Summary/Abstract
Subarachnoid hemorrhage (SAH) is a devasting acute neurological disease that remains a major cause of
premature mortality. SAH is most caused by incidental rupture of an intracranial aneurysm (ICA). The mortality
rate of aneurysm rupture can reach as high as 40% within the first week of incidence. Even if the aneurysm is
treated in a timely manner, the chance of moderate to severe brain damage is 20-35%. Endovascular coil
embolization is the current gold-standard, minimally invasive therapy of ICAs; however, emerging clinical
challenges of coil embolization are unsatisfactory aneurysm recurrence rates: ~44% by 5-6 years after the initial
coil therapy (of which more than 50% requiring re-treatment), and suboptimal complete occlusion, especially for
treating wide-necked ICAs and/or aneurysms with a complex 3D geometry. Thus, there is a need for a durable
device to treat unruptured ICAs that targets patient-specific aneurysms and intra-aneurysmal circulation and
provides long-lasting complete occlusion. Our research objectives of this project are to: 1) design and fabricate
personalized embolic devices for treating saccular, bifurcated IACs using additive manufacturing and a combined
experimental/biomechanical approach, and 2) provide a holistic biomechanical and hemodynamic comparison
between our device and other selected endovascular embolic techniques. This proposal builds upon the
assembled preliminary data, and leverages Dr. Lee’s experience with tissue biomechanics and in-silico
modeling, in collaboration with polymer science and additive manufacturing researchers at the University of
Oklahoma, clinical and neurosurgical expertise of clinicians at Indiana University – Medicine, and micro-device
and catheter expert at Purdue. Specifically, we propose to design, develop, and evaluate patient-specific SMP
embolic devices using 3D printing-based polymer fabrication. Our embolic devices are designated to target
personalized aneurysm filling and maximize the rate of long-lasting complete occlusion. Next, through in-vitro
flow loop testbed and in-vivo small animal studies, the efficacy and aneurysm occlusion of our personalized
embolic devices will be systematically evaluated in comparison to the clinical gold standard as well as three other
contemporary embolic methods. The endpoint of this project will be a cutting-edge solution for ICA embolization,
that uses fundamental information on aneurysms based on holistic biomechanical and hemodynamic analyses
– allowing individual-optimized aneurysm filling to achieve immediate & long-term complete occlusion and reduce
aneurysm recurrence. Collectively, our developments will serve as a logical first step toward attaining our long-
term goal to advance the state of the art in translational medicine by facilitating personalized, preventive
management of unruptured ICAs and reduce aneurysm rupture-induced hemorrhagic strokes.
项目总结/摘要
蛛网膜下腔出血(SAH)是一种严重的急性神经系统疾病,
过早死亡蛛网膜下腔出血大多数是由颅内动脉瘤(伊卡)意外破裂引起的。死亡
在发病的第一周内,动脉瘤破裂率可高达40%。即使动脉瘤
如果及时治疗,中度至重度脑损伤的几率为20- 35%。血管内弹簧圈
栓塞是目前ICA的金标准,微创治疗;然而,
弹簧圈栓塞的挑战是动脉瘤复发率不令人满意:初次栓塞后5-6年约为44%。
弹簧圈治疗(其中超过50%需要再次治疗)和次优完全闭塞,特别是对于
治疗具有复杂3D几何形状的宽颈ICA和/或动脉瘤。因此,需要一种持久的
治疗未破裂ICA的器械,针对患者特定动脉瘤和颅内循环,
提供持久的完全闭塞。本计画之研究目标为:1)设计与制作
用于使用增材制造和组合制造治疗囊状分叉IAC的个性化栓塞装置
实验/生物力学方法,以及2)提供整体生物力学和血流动力学比较
我们的器械和其他选定的血管内栓塞技术之间的差异。该提案建立在
收集初步数据,并利用李博士在组织生物力学和计算机模拟方面的经验,
建模,与聚合物科学和增材制造研究人员在大学的合作,
俄克拉荷马州,印第安纳州大学医学院临床医生的临床和神经外科专业知识,以及微型器械
也是普渡大学的导管专家具体而言,我们建议设计,开发和评估患者特异性SMP
使用基于3D打印的聚合物制造的栓塞装置。我们的栓塞装置专门针对
个性化的动脉瘤填充和最大限度地提高长期完全闭塞率。接下来,通过体外
流动回路试验台和体内小动物研究,我们的个性化的疗效和动脉瘤闭塞
栓塞器械将与临床金标准以及其他三种
现代栓塞方法。该项目的终点将是伊卡栓塞的尖端解决方案,
它使用基于整体生物力学和血液动力学分析的动脉瘤基本信息
- 允许个体优化的动脉瘤填充,以实现即刻和长期完全闭塞,并减少
动脉瘤复发总的来说,我们的发展将成为实现我们长期目标的合乎逻辑的第一步,
长期目标是通过促进个性化,预防性和治疗性的转化医学,
管理未破裂的ICA并减少动脉瘤破裂引起的出血性卒中。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An investigation of how specimen dimensions affect biaxial mechanical characterizations with CellScale BioTester and constitutive modeling of porcine tricuspid valve leaflets
使用 CellScale BioTester 和猪三尖瓣小叶的本构模型研究样本尺寸如何影响双轴机械特性
- DOI:10.1016/j.jbiomech.2023.111829
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Laurence, Devin W.;Wang, Shuodao;Xiao, Rui;Qian, Jin;Mir, Arshid;Burkhart, Harold M.;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
MetaNO: How to Transfer Your Knowledge on Learning Hidden Physics.
MetaNO:如何转移您学习隐藏物理的知识。
- DOI:10.1016/j.cma.2023.116280
- 发表时间:2023
- 期刊:
- 影响因子:7.2
- 作者:Zhang,Lu;You,Huaiqian;Gao,Tian;Yu,Mo;Lee,Chung-Hao;Yu,Yue
- 通讯作者:Yu,Yue
Linking the region-specific tissue microstructure to the biaxial mechanical properties of the porcine left anterior descending artery.
- DOI:10.1016/j.actbio.2022.07.036
- 发表时间:2022-09-15
- 期刊:
- 影响因子:9.7
- 作者:Pineda-Castillo, Sergio A.;Aparicio-Ruiz, Santiago;Burns, Madison M.;Laurence, Devin W.;Bradshaw, Elizabeth;Gu, Tingting;Holzapfel, Gerhard A.;Lee, Chung-Hao
- 通讯作者:Lee, Chung-Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chung-Hao Lee其他文献
Chung-Hao Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 66.03万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 66.03万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 66.03万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 66.03万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 66.03万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 66.03万 - 项目类别:
Standard Grant














{{item.name}}会员




