A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
基本信息
- 批准号:10685358
- 负责人:
- 金额:$ 85.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptionBindingBiologicalBusinessesCellular PhoneChemicalsCloud ComputingCloud ServiceComputational algorithmComputer softwareCustomDataData AnalysesData SetData SourcesDatabasesDevelopmentDiseaseDisparateDistributed DatabasesEffectivenessEnvironmentInformaticsIntuitionMarketingMethodologyModelingModernizationPerformancePharmaceutical PreparationsPharmacologic SubstancePhasePrivatizationProcessProviderPubChemPublic DomainsResearchResourcesRunningScientistSecureSecuritySourceSpecific qualifier valueSystemTechniquesTechnologyTestingTranslationsUnited States National Institutes of HealthVendorVisualVisualizationanalytical toolchemical associationcloud basedcomputational platformcomputer frameworkcomputerized toolsdata accessdata repositorydata resourcedistributed datadrug discoveryflexibilityimprovedinnovationinnovative technologieslarge datasetsmultiple data sourcesnovelopen sourceoperationpreventreal world applicationtoolvirtual environment
项目摘要
PROJECT SUMMARY
Collaborative Drug Discovery, Inc. (CDD) proposes to develop Cloud Workspaces for Drug Discovery – a
novel informatics framework that will enable scientists engaged in drug discovery and translation to effort-
lessly, robustly, and securely integrate disparate databases and computational tools distributed across multiple
systems and vendors into highly-efficient, custom-tailored computational workflows. Our innovative technol-
ogy will solve a critical problem that hinders drug discovery and translation efforts: scientists in this field typi-
cally need to combine chemical and biological data from several sources, run them through multiple software
packages that specialize in different types of analyses and visualization, then ideally store the results of the
analyses together with their underlying experimental data. Today, this type of integration is difficult and
expensive to accomplish and typically fragile, creating a large barrier to (i) exploiting the rapidly increasing
number of high-quality public-access data repositories and (ii) evaluating promising new analytical tools and
strategies. Monolithic platforms offer to solve this problem by bringing everything together under one roof, but
they are extremely expensive and they limit flexibility: no single platform can offer every capability. The alter-
native approach – stringing together discrete resources – evolved during the era of desktop computing and
does not translate well to modern cloud-based workflows and in particular to the challenges of performing
computationally intensive operations that require combining large datasets distributed across remote systems.
Cloud Workspaces (CW) aims to combine the strengths and avoid the weaknesses of these two extremes. CW
will in essence allow users to easily create their own individualized cloud-hosted solutions tailored to their
unique requirements and workflows. Our approach offers the performance, robustness, and ease of use of a
monolithic software solution, but without the associated inflexibility and vendor lock in. It offers the flexibility
and openness of combining discrete resources, but without the associated integration challenges and fragility,
and it advances the pipelining approach to embrace cloud-based models and to encompass distributed data
resources without compromising performance or security. In Phase 1 we proved that we could robustly and
efficiently synchronize biological and chemical data (transferring only new or modified data while retaining
correct association of chemical identifiers) between the CW container environment and remote databases,
which was a challenging but essential prerequisite for our concept. In Phase 2 we will complete development of
CW and demonstrate its effectiveness with multiple real-world applications together with software application
partners and beta customer end users. The market for the technology ranges from academics to small and
medium size companies to the large pharmaceutical firms.
项目摘要
Collaborative Drug Discovery,Inc. (CDD)建议为药物发现开发云工作空间- a
新的信息学框架,将使从事药物发现和翻译的科学家能够努力-
更少、更健壮、更安全地集成分布在多个
系统和供应商整合到高效、定制的计算工作流程中。我们的创新技术-
ogy将解决一个阻碍药物发现和翻译工作的关键问题:该领域的科学家通常会
通常需要将来自多个来源的化学和生物数据联合收割机,通过多个软件运行它们
专门用于不同类型的分析和可视化的软件包,然后理想地存储
分析及其基础实验数据。今天,这种类型的整合是困难的,
实现成本高,而且通常很脆弱,这对(i)利用快速增长的
高质量的公共访问数据储存库的数量,以及㈡评价有前途的新分析工具,
战略布局单片平台通过将所有东西集中在一个屋檐下来解决这个问题,
它们非常昂贵,并且限制了灵活性:没有一个平台可以提供所有功能。另一个-
本机方法-将离散资源串在一起-在桌面计算时代发展,
无法很好地转化为现代基于云的工作流程,尤其是在执行
需要组合分布在远程系统中的大型数据集的计算密集型操作。
云工作空间(CW)旨在联合收割机结合这两个极端的优点,避免这两个极端的缺点。CW
从本质上讲,将允许用户轻松创建自己的个性化云托管解决方案,
独特的要求和工作流程。我们的方法提供了性能,鲁棒性和易用性,
整体软件解决方案,但没有相关的不灵活性和供应商锁定。它提供了灵活性
和开放性,但没有相关的整合挑战和脆弱性,
它推进了流水线方法,以包含基于云的模型和分布式数据,
资源,而不会影响性能或安全性。在第一阶段,我们证明了我们可以稳健地,
有效地同步生物和化学数据(仅传输新的或修改的数据,同时保留
化学标识符的正确关联)在CW容器环境和远程数据库之间,
这对我们的概念来说是一个具有挑战性但必不可少的先决条件。在第二阶段,我们将完成
CW并通过多个实际应用程序和软件应用程序证明其有效性
合作伙伴和测试版客户最终用户。该技术的市场范围从学术界到小型和
从中型企业到大型制药企业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY A BUNIN其他文献
BARRY A BUNIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY A BUNIN', 18)}}的其他基金
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10357906 - 财政年份:2020
- 资助金额:
$ 85.49万 - 项目类别:
Automated Molecular Identity Disambiguator (AutoMID)
自动分子身份消歧器 (AutoMID)
- 批准号:
10569639 - 财政年份:2020
- 资助金额:
$ 85.49万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10241834 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
A Robust, Secure Framework to Effortlessly Bind Distributed Databases and Analysis Tools into Tightly Integrated Translational Drug Discovery Computational Platforms
一个强大、安全的框架,可以轻松地将分布式数据库和分析工具绑定到紧密集成的转化药物发现计算平台中
- 批准号:
10484172 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Digital representation of chemical mixtures to aid drug discovery and formulation
化学混合物的数字表示以帮助药物发现和配制
- 批准号:
9902210 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Intelligent Chemical Structure Browser for Drug Discovery and Optimization
用于药物发现和优化的智能化学结构浏览器
- 批准号:
10386918 - 财政年份:2019
- 资助金额:
$ 85.49万 - 项目类别:
Novel deep learning strategy to better predict pharmacological properties of candidate drugs and focus discovery efforts
新颖的深度学习策略可以更好地预测候选药物的药理学特性并集中发现工作
- 批准号:
10133177 - 财政年份:2018
- 资助金额:
$ 85.49万 - 项目类别:
Novel deep learning strategy to better predict pharmacological properties of candidate drugs and focus discovery efforts
新颖的深度学习策略可以更好地预测候选药物的药理学特性并集中发现工作
- 批准号:
10004481 - 财政年份:2018
- 资助金额:
$ 85.49万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 85.49万 - 项目类别:
Research Grant