Advancing Neurosurgical Neuronavigation Using Resting State MRI and Machine Learning
利用静息态 MRI 和机器学习推进神经外科神经导航
基本信息
- 批准号:10685402
- 负责人:
- 金额:$ 55.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-17 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptionAlgorithmsAnatomyArchitectureBiological MarkersBiopsyBrainBrain MappingBrain NeoplasmsBrain imagingBrain regionCaringChildClinicalClinical TrialsCognitiveComputer softwareCraniotomyDataDevelopmentDevicesDiagnosisExcisionFailureFunctional Magnetic Resonance ImagingFundingGlioblastomaGliomaGoalsImageImaging technologyInfrastructureInvestigationKnowledgeLesionMachine LearningMagnetic Resonance ImagingMalignant GliomaMapsMethodsNavigation SystemNeuroanatomyNeuronavigationNeuronsNeurosurgeonOperative Surgical ProceduresOutcomeOutputPathologicPatient CarePatient ParticipationPatient imagingPatient-Focused OutcomesPatientsPerformancePopulationProceduresProductivityPrognosisProgression-Free SurvivalsPublic HealthQuality ControlQuality of lifeResearchRestSedation procedureSurgeonSystemSystems IntegrationTechniquesTechnologyTimeUnited States Food and Drug AdministrationUniversitiesValidationVisualizationWashingtonWorkanalysis pipelinebrain tumor resectionclinical decision supportclinical decision-makingclinically relevantconvolutional neural networkeffective therapyexperiencefunctional statusimprovedindividualized medicineindustry partnerinnovationinsightmachine learning algorithmmultilayer perceptronneurosurgerynext generationoperationpersonalized approachpreservationprognosticprognostic algorithmprognostic of survivalprospectiveradiomicssuccesssurvival predictiontooltreatment optimizationtreatment planningtumor
项目摘要
Abstract. Long-term survival of patients with glioblastomas (GBM) are associated with two competing priorities:
1) gross total resection and 2) preservation of the patient’s function. Stereotactic navigation, in which
reconstructed magnetic resonance images (MRI) of the brain are used for real-time intraoperative anatomic
guidance, has become an essential tool for tumor resection. Further, there are emerging insights that glioma-
specific perturbations of the functional organization of the brain impact the patient’s survival. However, the
current barrier is that there is no FDA approved navigation system that enables the surgeon to visualize the
functional architecture of the brain and the impact a tumor has on the brain’s network organization to inform
prognosis. Resting state functional MRI (rs-fMRI) has emerged as a powerful tool for mapping clinically relevant
brain networks and defining critical glioma-neuronal interactions. rs-fMRI is highly efficient, task independent,
and multiple resting state networks (RSNs) can be mapped simultaneously. With this in mind, the long-term goal
of our research is to improve treatment, survival, and quality of life for patients with brain tumors by improving
the identification of eloquent cortex and providing actionable metrics for survival prognosis to best tailor a
patient’s care. In our first Academic Industry Partnership between Washington University and Medtronic we were
extremely productive in creating an integrated brain-mapping navigation technology using rs-fMRI. Specifically,
we created a robust image acquisition/analysis pipeline that includes pre-processing of raw data, quality control
analytics, and clinical validation demonstrating superior performance over task-based fMRI. We have also been
leaders in deriving prognostic radiomic biomarkers from rs-fMRI. In this continuation, we will build on these
successes. The overall objective is to create advanced rs-fMRI machine learning (ML) tools to more efficiently
and accurately define functional cortex and provide preoperative prognostic metrics of survival as a
comprehensive surgical/care navigation system. We have the expertise, infrastructure, and data, to advance rs-
fMRI to be a powerful tool for neurosurgical decision support. The proposal entails three specific aims: 1)
Advance an ML algorithm to enable more accurate and data efficient rs-fMRI brain-mapping software, 2) Create
an rs-fMRI ML algorithm to preoperatively predict survival in glioblastoma (GBM) patients, and 3) Validate impact
of mapping and prognostic algorithms on clinical decision making in prospective feasibility clinical trial. The
expected outcome of this work will be an integrated imaging/surgical navigation technology using rs-fMRI for
clinical decision support with defined performance, clinical validation, and a regulatory path for FDA clearance.
Thus, this proposal is innovative because 1) the software will map networks with substantially shorter image
acquisition times, thus enabling more widespread adoption and 2) provide critical pre-operative survival insights
to inform surgical decisions. This work is significant because it will disseminate technology that fundamentally
enhances more tailored approaches to improving patient outcomes and quality of life.
抽象的。胶质母细胞瘤(GBM)患者的长期生存与两个相互竞争的优先事项有关:
1)大体全切除和2)保留患者的功能。立体定向导航,其中
脑的重建磁共振图像(MRI)用于术中实时解剖
导引,已成为肿瘤切除必不可少的工具。此外,有新的见解认为,胶质瘤-
大脑功能组织的特定扰动会影响患者的生存。然而,
目前的障碍是,没有FDA批准的导航系统,使外科医生能够可视化
大脑的功能结构和肿瘤对大脑网络组织的影响
预后。摘要静息状态功能磁共振成像(rs-fmri)已成为临床相关标测的有力工具。
大脑网络和定义关键的神经胶质瘤-神经元相互作用。RS-fMRI是高效的,独立于任务的,
并且可以同时映射多个休眠状态网络(RSN)。考虑到这一点,长期目标是
我们研究的重点是通过改善脑瘤患者的治疗,提高患者的存活率和生活质量
口才皮质的识别和为生存预后提供可操作的指标以最好地定制
病人的护理。在华盛顿大学和美敦力之间的第一个学术行业合作伙伴关系中,我们
在使用rs-fmri创建集成脑图导航技术方面非常有成效。具体来说,
我们创建了一个强大的图像采集/分析流水线,包括原始数据的预处理、质量控制
分析和临床验证表明,其性能优于基于任务的功能磁共振成像。我们也一直在
从rs-fmri中获得预后放射性生物标记物的领先者。在接下来的文章中,我们将在这些基础上
成功。总体目标是创建高级的rs-fmri机器学习(ML)工具,以更有效地
并准确定义功能性皮质,并提供术前生存预后指标
全面的手术/护理导航系统。我们拥有专业知识、基础设施和数据,可以推动-
功能磁共振成像将成为神经外科决策支持的有力工具。该提案涉及三个具体目标:1)
提出ML算法,以实现更准确和数据效率更高的RS-fMRI脑图软件,2)创建
RS-fMRI ML算法用于胶质母细胞瘤(GBM)患者的术前生存预测,以及3)验证影响
前瞻性可行性临床试验中临床决策的绘图和预测算法的研究。这个
这项工作的预期成果将是一种使用RS-fMRI的综合成像/外科导航技术
具有明确的绩效、临床验证和FDA批准的监管路径的临床决策支持。
因此,这一建议是创新的,因为1)该软件将以显著较短的图像绘制网络地图
获取时间,从而实现更广泛的采用;2)提供关键的术前生存洞察力
为手术决定提供信息。这项工作意义重大,因为它将从根本上传播技术
加强更多量身定做的方法,以改善患者的预后和生活质量。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural gray matter alterations in glioblastoma and high-grade glioma-A potential biomarker of survival.
- DOI:10.1093/noajnl/vdad034
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Resting State Functional MR Imaging of Language Function.
- DOI:10.1016/j.nic.2020.09.005
- 发表时间:2021-03
- 期刊:
- 影响因子:2.3
- 作者:Lee JJ;Luckett P;Fakhri MM;Leuthardt EC;Shimony JS
- 通讯作者:Shimony JS
Preoperative functional connectivity by magnetic resonance imaging for refractory neocortical epilepsy.
通过磁共振成像对难治性新皮质癫痫进行术前功能连接。
- DOI:10.1101/2023.01.10.23284374
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Johnson,EmilyA;Lee,JohnJ;Hacker,CarlD;Park,KiYun;Rustamov,Nabi;Daniel,AndyGS;Shimony,JoshuaS;Leuthardt,EricC
- 通讯作者:Leuthardt,EricC
Machine Learning Analytics of Resting-State Functional Connectivity Predicts Survival Outcomes of Glioblastoma Multiforme Patients.
- DOI:10.3389/fneur.2021.642241
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Lamichhane B;Daniel AGS;Lee JJ;Marcus DS;Shimony JS;Leuthardt EC
- 通讯作者:Leuthardt EC
The State of Resting State Networks.
- DOI:10.1097/rmr.0000000000000214
- 发表时间:2019-08-01
- 期刊:
- 影响因子:0
- 作者:Seitzman, Benjamin A;Snyder, Abraham Z;Shimony, Joshua S
- 通讯作者:Shimony, Joshua S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric CLAUDE Leuthardt其他文献
Eric CLAUDE Leuthardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric CLAUDE Leuthardt', 18)}}的其他基金
Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
- 批准号:
10318158 - 财政年份:2017
- 资助金额:
$ 55.35万 - 项目类别:
Augmented Neurosurgical Navigation Software Using Resting State MRI
使用静息态 MRI 的增强神经外科导航软件
- 批准号:
10066314 - 财政年份:2017
- 资助金额:
$ 55.35万 - 项目类别:
Development of a Micro-ECoG Neuroprosthesis for Motor Rehabilitation in a Chronic Corticospinal Stroke Injury
开发用于慢性皮质脊髓中风损伤运动康复的微型 ECoG 神经假体
- 批准号:
10065528 - 财政年份:2017
- 资助金额:
$ 55.35万 - 项目类别:
MAPPING ELOQUENT CORTEX USING RESTING STATE CORTICAL PHYSIOLOGY
使用静息态皮质生理学绘制雄辩皮质图
- 批准号:
8256952 - 财政年份:2011
- 资助金额:
$ 55.35万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 55.35万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 55.35万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 55.35万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 55.35万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 55.35万 - 项目类别:
Standard Grant














{{item.name}}会员




