Enzymatic and genetic strategies for targeting disease-associated microbial metabolites
针对疾病相关微生物代谢物的酶和遗传策略
基本信息
- 批准号:10686498
- 负责人:
- 金额:$ 135.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAnabolismAttentionBacteriaCRISPR interferenceCRISPR/Cas technologyCancer InterventionCell Culture TechniquesCellsCessation of lifeClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCodeColorectal CancerCommunitiesDNADNA DamageDiseaseEnterobacteriaceaeEnvironmentEnzymesEscherichia coliEtiologyFunctional disorderGene ClusterGeneticGerm-FreeHealthHybridsIn SituIn VitroIndividualIslandKnock-outLightMediatingMetabolic PathwayMethodologyMicrobeMusPathologyPeptidesPhysiologyPlasmidsProcessProductionRoleSurfaceSystemTissuescarcinogenesisefficacy validationgene conservationgenetic approachgut microbiotahost-microbe interactionsmembermicrobialmicrobiome researchmicrobiotamouse modeloverexpressionpolyketide synthasepolyketidespressurepreventsecondary metabolitesenescencetranslational study
项目摘要
Abstract
Microbiome research has increasingly highlighted contributions of individual microbiota members to health and
disease. Accumulating evidence suggests that microbes influence host physiology and pathology in part through
microbial metabolites. To understand the roles of diverse microbial metabolites in host pathophysiology, most
studies focus on manipulating individual bacterial strains’ metabolite production with genetic knockout or over-
expression to interrogate the causality between microbes, microbial metabolites and host processes. However,
this strategy has its own limitations in that certain microbial metabolites are derived from multiple microbial
species harboring conserved gene clusters. One example is colibactin, a bacterial secondary metabolite that
has
garnered increasing attention due to its implications in colorectal cancer and gut microbiota composition and
function. Colibactin is a hybrid polyketide-nonribosomal peptide produced by different Enterobacteriaceae
carrying a highly-conserved polyketide synthase (pks) gene cluster. However, progress in understanding
colibactin+ bacteria has been largely limited to manipulating and characterizing individual knockout bacterial
strains in cell culture or germ-free mice, while overlooking the fact that multiple different enteric bacteria in a
native environment can produce colibactin to impact the host through the acquisition of the conserved pks island.
Furthermore, no strategy has been developed to target colibactin+ bacteria for cancer intervention in light of the
accumulating evidence that colibactin promotes host DNA damage, senescence and carcinogenesis. To address
the limitations in understanding and targeting colibactin+ bacteria, two complementary and highly integrated
approaches will be developed to inhibit colibactin. The first approach is enzymatic inactivation through hijacking
an anti-colibactin enzyme employed by diverse colibactin+ bacteria to prevent self-DNA damage by colibactin.
Bacterial surface display of the anti-colibactin enzyme will be explored to maximize the catalytic inactivation of
colibactin at the bacteria-host interface. In parallel, the second strategy is genetic inhibition, where the conserved
pks island coding for colibactin will be inhibited by two different CRISPR systems delivered by a self-transmissible
broad-host-range conjugative plasmid. While CRISPR-Cas9 (CRISPR knockout) eliminates colibactin+ bacteria
via direct DNA cleavage, CRISPR-dCpf1 (CRISPR interference) suppresses colibactin biosynthesis without
inducing bacterial death and selection pressure for evasion. Both enzymatic and genetic inhibition systems will
be delivered by genetically tractable native E. coli isolates that have been demonstrated for efficient colonization
in the gut. In vitro bacteria-host cell coculture, polymicrobial communities, and mouse models will be employed
to compare and validate the efficacy of enzymatic and genetic approaches. While this application focuses on
colibactin, if successful, it will pioneer methodologies to directly manipulate microbial metabolites at the cellular,
tissue and organismal levels to accelerate fundamental and translational studies.
抽象的
微生物组研究已增强了个别微生物群成员对健康的贡献
疾病。积累的证据表明,微生物部分影响了宿主的生理和病理学
微生物代谢产物。为了了解潜水微生物代谢产物在宿主病理生理学中的作用,大多数
研究的重点是通过基因敲除或过度操纵单个细菌菌株的代谢产物的代谢产物
表达以询问微生物,微生物代谢产物和宿主过程之间的因果关系。然而,
该策略具有其自身的局限性,因为某些微生物代谢产物来自多个微生物
藏有构成基因簇的物种。一个例子是科利列汀,一种细菌二级代谢产物,
有
由于其对结直肠癌和肠道菌群组成的影响以及
功能。结肠癌是由不同的肠杆菌科产生的杂交聚酮化合物 - 非核糖体肽
携带高度保存的聚酮化合物合酶(PKS)基因簇。但是,理解的进展
科比氏素+细菌在很大程度上仅限于操纵和表征单个基因敲除细菌
细胞培养或无菌小鼠的菌株,同时忽略了一个事实,即
本地环境可以通过获得配置的PKS岛产生肠actin以影响宿主。
此外,根据
累积的证据表明肠胃痛会促进宿主DNA损伤,感应和癌变。解决
理解和靶向Colibactin+细菌的局限性,两个完整且高度整合
将开发方法来抑制结肠癌。第一种方法是通过劫持酶灭活
由Divers Colibactin+细菌采用的一种抗哥伦比辛酶,以防止结肠癌损伤。
将探索抗哥伦比亚素酶的细菌表面显示,以最大化催化失活
在细菌宿主界面处的结肠癌。同时,第二种策略是遗传抑制,其中配置
PKS岛编码为Colibactin的编码将被两种不同的CRISPR系统抑制
广泛的宿主范围偶联质粒。而CRISPR-CAS9(CRISPR淘汰)消除了Colibactin+细菌
通过直接DNA裂解,CRISPR-DCPF1(CRISPR干扰)抑制了Colibactin Biosynsiss,而无需
诱导细菌死亡和逃避选择压力。酶和遗传抑制系统都将
通过已证明以有效定殖的一般可牵引的天然大肠杆菌分离株传递
体外细菌 - 宿主细胞培养,多数菌群和小鼠模型将被录用
比较和验证酶和遗传方法的效率。虽然此应用程序重点是
结肠癌,如果成功,它将开创性方法直接在细胞处操纵微生物代谢物,
组织和有机水平加速基本和翻译研究。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonpathogenic E. coli engineered to surface display cytokines as a new platform for immunotherapy.
非致病性大肠杆菌经过改造可表面展示细胞因子,作为免疫治疗的新平台。
- DOI:10.21203/rs.3.rs-4031911/v1
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Yang,Shaobo;Sheffer,Michal;Kaplan,IsabelE;Wang,Zongqi;Tarannum,Mubin;Dinh,Khanhlinh;Abdulhamid,Yasmin;Shapiro,Roman;Porter,Rebecca;Soiffer,Robert;Ritz,Jerome;Koreth,John;Wei,Yun;Chen,Peiru;Zhang,Ke;Márquez-Pellegrin,Valeria
- 通讯作者:Márquez-Pellegrin,Valeria
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiahe Li其他文献
Jiahe Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiahe Li', 18)}}的其他基金
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
- 批准号:
10875055 - 财政年份:2023
- 资助金额:
$ 135.53万 - 项目类别:
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
- 批准号:
10534754 - 财政年份:2022
- 资助金额:
$ 135.53万 - 项目类别:
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
- 批准号:
10353249 - 财政年份:2022
- 资助金额:
$ 135.53万 - 项目类别:
Engineering Probiotics to Sense and Respond to the Intracellular Redox Imbalance towards Mitochondrial Dysfunction
工程益生菌可感知和响应细胞内氧化还原失衡导致线粒体功能障碍
- 批准号:
10303309 - 财政年份:2021
- 资助金额:
$ 135.53万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 135.53万 - 项目类别:
Biosynthesis of marine terpenoid natural products
海洋萜类天然产物的生物合成
- 批准号:
10737210 - 财政年份:2023
- 资助金额:
$ 135.53万 - 项目类别:
Functional analysis of KCNK12 in dopaminergic neuroprotection
KCNK12在多巴胺能神经保护中的功能分析
- 批准号:
10665836 - 财政年份:2023
- 资助金额:
$ 135.53万 - 项目类别:
Novel mechanisms of muscle and bone loss with HIV infection, antiretroviral therapy, and aging.
HIV 感染、抗逆转录病毒治疗和衰老导致肌肉和骨质流失的新机制。
- 批准号:
10696502 - 财政年份:2023
- 资助金额:
$ 135.53万 - 项目类别:
Ceramides as novel drivers of metabolic dysfunction and colorectal cancer
神经酰胺作为代谢功能障碍和结直肠癌的新驱动因素
- 批准号:
10696086 - 财政年份:2022
- 资助金额:
$ 135.53万 - 项目类别: