Studying the Regulatory Dynamics with Single-cell Multiomics
用单细胞多组学研究调控动力学
基本信息
- 批准号:10686569
- 负责人:
- 金额:$ 173.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAgingBase Excision RepairsBiological ModelsBiological ProcessBiology of AgingCellsCommunicationComplexDNA DamageDNA MethylationDetectionDevelopmentDiseaseEpigenetic ProcessEquilibriumFoundationsGene ExpressionGenetic TranscriptionGenomicsHealthIndividualInterventionJointsLinkMalignant NeoplasmsMeasuresMethodsModalityMolecularMolecular ProfilingMusNerve DegenerationNervous SystemNeuronsPopulationProcessReactionRegulator GenesRegulatory ElementRisk FactorsShapesStructureTechnologyTissuesVariantWritingaging brainbiological systemsbody systembrain tissuecell typeclinical developmentdemethylationepigenomeepigenomicsinnovationmouse modelmultimodalitymultiple omicsoxidative damageprogramsspatiotemporaltooltranscriptometranscriptomics
项目摘要
Project Summary/Abstract
A multitude of epigenomic variables and mechanisms contribute to cell-type-specific gene expression
programs, and the spatiotemporal dynamics of these complex gene regulatory machinery laid the foundations
for diverse biological processes, particularly in development, disease, and aging. Single-cell genomics
technologies allowed capturing the static snapshots, such as transcriptomic or epigenomic states of the cells;
while it remained challenging to study the temporal dynamics of the cell’s state transition processes. We
hypothesized that the regulatory dynamics are shaped by the balance between “writing” and “erasing” of
epigenomic variables, and thus can be inferred from measuring the linked molecular layers that maintain
regulatory equilibriums by the development of single-cell multiomics technologies. Studying the regulatory
dynamics of cell state transition is particularly challenging in aging brains: aging of the brain involves complex
cellular and molecular changes, including variations in molecular signatures of certain cell types, changes in
cell population compositions, and declined communications between neuron cells in this tissue with the most
sophisticated cellular composition and spatial organizations. Aging contributes to many diseases that affect all
organ systems and is the greatest risk factor for multiple diseases, including neurodegeneration and cancers.
Understanding the fundamental biology of aging is essential for the development of clinical interventions. But
current omics analysis of aging can only capture the static pictures of individual modalities, which cannot
differentiate well-maintained components (young) from those who are about to lose fidelity (pre-decay) nor
record the complex relationships between different molecule types. In this proposal, we aim to fundamentally
transform our approaches to studying the principles of cell state transition, focusing on the mouse aging brain
as a model system, by developing innovative single-cell genomics technologies for joint analysis of the cell’s
regulatory dynamics and transcriptional states. Firstly, we will develop a set of single-cell multiomics tools for
integrated analysis of the rates of forward and reverse reactions in maintaining the cell’s regulatory states,
including epigenome (DNA methylation and active demethylation) and DNA damages (oxidative damages and
base excision repair) with the transcriptional states. Next, we will develop a technology for the detection of
colocalized regulatory elements and their epigenetic states jointly with transcriptomes from single cells, to
evaluate the cell’s regulatory functionality. Finally, we will develop a modularized platform for tissue-scale
high-definition 3-D spatial registration of single cells (AMBER) and then combine it with these single-cell
multiomics tools to reconstruct the whole tissue structure with multimodal molecular profiles. We will apply our
methods to investigate the molecular changes of aging in nervous systems with 3-D spatial information from
mouse models, and believe our approach is broadly applicable to studying regulatory dynamics across various
biological systems both in health and diseases.
项目摘要/摘要
多种表观基因组变量和机制有助于细胞型特异性基因表达
程序,以及这些复杂基因调节机制的时空动力学奠定了基础
用于潜水员生物学过程,特别是在发育,疾病和衰老中。单细胞基因组学
技术允许捕获静态快照,例如细胞的转录组或表观基因组状态;
虽然研究细胞的状态过渡过程的临时动态仍然是挑战。我们
假设调节动态是由“写作”和“擦除”之间的平衡所塑造的
表观基因组变量,因此可以通过测量维持的链接的分子层来推断
通过开发单细胞多组学技术的调节平衡。研究监管
细胞状态过渡的动力学在衰老的大脑中尤其具有挑战性:大脑的衰老涉及复杂
细胞和分子变化,包括某些细胞类型的分子特征的变化,变化
细胞种群组成,并降低该组织中神经元细胞之间的通信
软化的细胞组成和空间组织。衰老会导致许多影响所有人的疾病
器官系统是多种疾病(包括神经变性和癌症)的最大风险因素。
了解衰老的基本生物学对于发展临床干预措施至关重要。但
当前对衰老的OMICS分析只能捕获单个模式的静态图片
区分维护良好的组件(年轻)与即将失去忠诚的人(预期)或
记录不同分子类型之间的复杂关系。在此提案中,我们的目标是从根本上
改变我们研究细胞状态过渡原理的方法,重点是小鼠衰老的大脑
作为模型系统,通过开发创新的单细胞基因组学技术来对细胞的联合分析
监管动力和转录状态。首先,我们将开发一组单细胞多组学工具
对维持细胞调节状态的正向反应和反应速率的综合分析,
包括表观基因组(DNA甲基化和活性脱甲基化)和DNA损伤(氧化损伤和
基本惊喜维修)具有转录状态。接下来,我们将开发一项技术以检测
共定位的调节元件及其表观遗传态与单个细胞的转录组共同
评估细胞的调节功能。最后,我们将开发一个用于组织尺度的模块化平台
单细胞(琥珀)的高清3-D空间登记,然后与这些单细胞结合
多组合工具可通过多模式分子曲线重建整个组织结构。我们将应用我们的
研究神经系统中衰老分子变化的方法,并从
鼠标模型,并认为我们的方法广泛适用于研究各种监管动态
健康和疾病中的生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenxu Zhu其他文献
Chenxu Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenxu Zhu', 18)}}的其他基金
Studying the Mammalian Regulatory Circuits by Developing Single-cell Multi-omics Technologies
通过开发单细胞多组学技术研究哺乳动物的调节回路
- 批准号:
10654046 - 财政年份:2022
- 资助金额:
$ 173.7万 - 项目类别:
Studying the Mammalian Regulatory Circuits by Developing Single-cell Multi-omics Technologies
通过开发单细胞多组学技术研究哺乳动物的调节回路
- 批准号:
10606883 - 财政年份:2022
- 资助金额:
$ 173.7万 - 项目类别:
Studying the mammalian regulatory circuits by developing single-cell multi-omics technologies
通过开发单细胞多组学技术研究哺乳动物调节回路
- 批准号:
10312802 - 财政年份:2020
- 资助金额:
$ 173.7万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别:
Reversal of Age-Associated Damage in the Planarian Germline
涡虫种系中年龄相关损伤的逆转
- 批准号:
10606234 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别: