Studying the Regulatory Dynamics with Single-cell Multiomics
用单细胞多组学研究调控动力学
基本信息
- 批准号:10686569
- 负责人:
- 金额:$ 173.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAgingBase Excision RepairsBiological ModelsBiological ProcessBiology of AgingCellsCommunicationComplexDNA DamageDNA MethylationDetectionDevelopmentDiseaseEpigenetic ProcessEquilibriumFoundationsGene ExpressionGenetic TranscriptionGenomicsHealthIndividualInterventionJointsLinkMalignant NeoplasmsMeasuresMethodsModalityMolecularMolecular ProfilingMusNerve DegenerationNervous SystemNeuronsPopulationProcessReactionRegulator GenesRegulatory ElementRisk FactorsShapesStructureTechnologyTissuesVariantWritingaging brainbiological systemsbody systembrain tissuecell typeclinical developmentdemethylationepigenomeepigenomicsinnovationmouse modelmultimodalitymultiple omicsoxidative damageprogramsspatiotemporaltooltranscriptometranscriptomics
项目摘要
Project Summary/Abstract
A multitude of epigenomic variables and mechanisms contribute to cell-type-specific gene expression
programs, and the spatiotemporal dynamics of these complex gene regulatory machinery laid the foundations
for diverse biological processes, particularly in development, disease, and aging. Single-cell genomics
technologies allowed capturing the static snapshots, such as transcriptomic or epigenomic states of the cells;
while it remained challenging to study the temporal dynamics of the cell’s state transition processes. We
hypothesized that the regulatory dynamics are shaped by the balance between “writing” and “erasing” of
epigenomic variables, and thus can be inferred from measuring the linked molecular layers that maintain
regulatory equilibriums by the development of single-cell multiomics technologies. Studying the regulatory
dynamics of cell state transition is particularly challenging in aging brains: aging of the brain involves complex
cellular and molecular changes, including variations in molecular signatures of certain cell types, changes in
cell population compositions, and declined communications between neuron cells in this tissue with the most
sophisticated cellular composition and spatial organizations. Aging contributes to many diseases that affect all
organ systems and is the greatest risk factor for multiple diseases, including neurodegeneration and cancers.
Understanding the fundamental biology of aging is essential for the development of clinical interventions. But
current omics analysis of aging can only capture the static pictures of individual modalities, which cannot
differentiate well-maintained components (young) from those who are about to lose fidelity (pre-decay) nor
record the complex relationships between different molecule types. In this proposal, we aim to fundamentally
transform our approaches to studying the principles of cell state transition, focusing on the mouse aging brain
as a model system, by developing innovative single-cell genomics technologies for joint analysis of the cell’s
regulatory dynamics and transcriptional states. Firstly, we will develop a set of single-cell multiomics tools for
integrated analysis of the rates of forward and reverse reactions in maintaining the cell’s regulatory states,
including epigenome (DNA methylation and active demethylation) and DNA damages (oxidative damages and
base excision repair) with the transcriptional states. Next, we will develop a technology for the detection of
colocalized regulatory elements and their epigenetic states jointly with transcriptomes from single cells, to
evaluate the cell’s regulatory functionality. Finally, we will develop a modularized platform for tissue-scale
high-definition 3-D spatial registration of single cells (AMBER) and then combine it with these single-cell
multiomics tools to reconstruct the whole tissue structure with multimodal molecular profiles. We will apply our
methods to investigate the molecular changes of aging in nervous systems with 3-D spatial information from
mouse models, and believe our approach is broadly applicable to studying regulatory dynamics across various
biological systems both in health and diseases.
项目概要/摘要
多种表观基因组变量和机制有助于细胞类型特异性基因表达
程序,以及这些复杂基因调控机制的时空动态奠定了基础
用于不同的生物过程,特别是发育、疾病和衰老。单细胞基因组学
技术允许捕获静态快照,例如细胞的转录组或表观基因组状态;
然而研究细胞状态转换过程的时间动态仍然具有挑战性。我们
假设监管动态是由“写入”和“擦除”之间的平衡决定的
表观基因组变量,因此可以通过测量维持的连接分子层来推断
通过单细胞多组学技术的发展实现调节平衡。研究监管
细胞状态转变的动力学对于衰老的大脑来说尤其具有挑战性:大脑的衰老涉及复杂的过程
细胞和分子变化,包括某些细胞类型分子特征的变化、
细胞群组成,并且该组织中神经元细胞之间的通讯下降最多
复杂的细胞组成和空间组织。衰老会导致许多影响所有人的疾病
器官系统,是多种疾病的最大危险因素,包括神经退行性疾病和癌症。
了解衰老的基本生物学对于临床干预措施的发展至关重要。但
目前的衰老组学分析只能捕获个体模式的静态图像,而无法捕捉到衰老的静态图像。
区分维护良好的组件(年轻的)和即将失去保真度的组件(腐烂前),也
记录不同分子类型之间的复杂关系。在本提案中,我们的目标是从根本上
改变我们研究细胞状态转换原理的方法,重点关注小鼠衰老大脑
作为模型系统,通过开发创新的单细胞基因组学技术来联合分析细胞的
调控动态和转录状态。首先,我们将开发一套单细胞多组学工具
对维持细胞调节状态的正向和反向反应速率进行综合分析,
包括表观基因组(DNA甲基化和主动去甲基化)和DNA损伤(氧化损伤和
碱基切除修复)与转录状态。接下来,我们将开发一种检测技术
共定位的调控元件及其表观遗传状态与单细胞的转录组一起,
评估细胞的调节功能。最后,我们将开发一个用于组织规模的模块化平台
单细胞的高清 3D 空间配准 (AMBER),然后将其与这些单细胞结合
多组学工具利用多模式分子谱重建整个组织结构。我们将应用我们的
利用 3D 空间信息研究神经系统衰老的分子变化的方法
小鼠模型,并相信我们的方法广泛适用于研究各种不同的监管动态
健康和疾病的生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenxu Zhu其他文献
Chenxu Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenxu Zhu', 18)}}的其他基金
Studying the Mammalian Regulatory Circuits by Developing Single-cell Multi-omics Technologies
通过开发单细胞多组学技术研究哺乳动物的调节回路
- 批准号:
10654046 - 财政年份:2022
- 资助金额:
$ 173.7万 - 项目类别:
Studying the Mammalian Regulatory Circuits by Developing Single-cell Multi-omics Technologies
通过开发单细胞多组学技术研究哺乳动物的调节回路
- 批准号:
10606883 - 财政年份:2022
- 资助金额:
$ 173.7万 - 项目类别:
Studying the mammalian regulatory circuits by developing single-cell multi-omics technologies
通过开发单细胞多组学技术研究哺乳动物调节回路
- 批准号:
10312802 - 财政年份:2020
- 资助金额:
$ 173.7万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 173.7万 - 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
- 批准号:
400097 - 财政年份:2019
- 资助金额:
$ 173.7万 - 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
- 批准号:
19K09017 - 财政年份:2019
- 资助金额:
$ 173.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
- 批准号:
18K09531 - 财政年份:2018
- 资助金额:
$ 173.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
- 批准号:
9766994 - 财政年份:2018
- 资助金额:
$ 173.7万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 173.7万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 173.7万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 173.7万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9925164 - 财政年份:2016
- 资助金额:
$ 173.7万 - 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
- 批准号:
9345997 - 财政年份:2016
- 资助金额:
$ 173.7万 - 项目类别:














{{item.name}}会员




