Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
基本信息
- 批准号:10686969
- 负责人:
- 金额:$ 10.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdoptionAdultAffectAgeAgreementAlgorithmsAlzheimer&aposs disease related dementiaAppearanceAreaArtificial IntelligenceAwardCardiovascular DiseasesCharacteristicsClinicalClinical InformaticsClinical TrialsCognitionCognitiveCohort StudiesDataDementiaDevelopmentDiagnosisEarly DiagnosisEarly InterventionElderlyElectronic Health RecordEnrollmentEnsureEpidemiologyExclusionExclusion CriteriaFactor AnalysisGleanGoalsHealth PersonnelHealthcare SystemsImpaired cognitionImpairmentIncidenceIndividualInformaticsInterventionInvestigationKidney DiseasesKnowledgeMachine LearningMeasuresMedicalMemory LossMentorshipMethodsNatural Language ProcessingNeurologyOutcomeParticipantPathway interactionsPatientsPerformancePharmaceutical PreparationsPhasePopulationPositioning AttributePrevalenceProceduresResearchResearch PersonnelRespiratory Tract InfectionsRiskRisk FactorsSamplingSleep DisordersStatistical MethodsSurveysSymptomsTechniquesTechnologyTestingTrainingbiomedical informaticscase findingclinical epidemiologycognitive testingcohortdementia riskexperiencehigh riskinnovationinsightlongitudinal analysismachine learning algorithmmachine learning modelmachine learning predictionmedical attentionmild cognitive impairmentmultimodalityneuropsychiatric disordernovel therapeuticsobservational cohort studyparticipant enrollmentpatient stratificationperformance testspre-clinicalprocess improvementprognostic modelprogramsrisk predictionrisk prediction modelskill acquisitionskillssocialtool
项目摘要
PROJECT SUMMARY
Early detection of Alzheimer’s disease and related dementias (ADRD) from electronic health records (EHRs)
can facilitate participant enrollment in clinical trials and early intervention once clinically available. Subjective
cognitive decline (SCD) can be an early manifestation of ADRD. Previous research in early detection of ADRD
has focused on observational study cohorts, generally small in size and often with stringent medical exclusion
criteria. Investigation of larger and more representative samples is needed to develop a full understanding of
the underlying conditions, procedures, and/or interventions that can contribute to cognitive decline or
accelerate progression to dementia in the population at large. The overall goal of this proposed research is to
leverage large-scale EHR data and advanced informatics technology to develop case-finding methods for SCD
and to advance the understanding of its risk factors and dementia outcomes in older adults. Preliminary data
suggest that clinical notes and machine learning (ML) algorithms can be helpful to capture patients with early
cognitive decline. However, identifying which patients with SCD are more likely to develop dementia is
extremely challenging. During the K99 phase, the first aim will be to develop an informatics approach to identify
a pre-dementia cohort (patients with evidence of a cognitive concern but no dementia). The second aim will
identify the social and clinical characteristics of this cohort in the EHR, along with antecedent risk factors, and
predictors for a dementia outcome. The two hypotheses are that 1) clinical conditions (eg, neuropsychiatric
disorders, cardiovascular diseases, renal disease, respiratory infections, sleep disorders) and medications that
deleteriously affect cognition will contribute to the initial appearance of cognitive decline; and 2) longitudinal,
multimodal EHR data can be leveraged in ML models to stratify patients with high risk of dementia. To
accomplish these goals, the applicant will leverage existing strengths in case identification, risk factor
analyses, and prognostic modeling and gain additional knowledge and skills in three critical areas of training:
(1) cognitive decline and ADRD, (2) clinical epidemiology, and (3) statistical methods. With the development of
these skills, the applicant will be well positioned in the R00 phase to conduct the final aim: to study the
antecedent risk factors and outcomes of SCD in a presumed SCD cohort (patients with both a subjective
cognitive concern and normal performance on objective cognitive measures). Similar approaches to those
used in the second aim will be employed to study the presumed SCD cohort. A highly innovative component of
this project is the use of advanced artificial intelligence and large-scale EHR data for presumed SCD cohort
identification, risk factor analyses, and early detection of dementia. The proposed study will provide some of
the first insights into the characteristics and risk factors of SCD in the EHR, and predictors for dementia
outcomes in SCD. For the applicant, this program will support a rapid transition to independence through a
short period of intensive training and mentorship, which will seamlessly intertwine with the aims of the
proposed project.
项目概要
通过电子健康记录 (EHR) 及早发现阿尔茨海默病和相关痴呆症 (ADRD)
可以促进参与者参加临床试验,并在临床可用后进行早期干预。主观
认知能力下降(SCD)可能是 ADRD 的早期表现。 ADRD 早期检测的既往研究
重点关注观察性研究队列,这些队列通常规模较小且通常具有严格的医疗排除
标准。需要对更大、更具代表性的样本进行调查,以充分了解
可能导致认知能力下降或的潜在条件、程序和/或干预措施
加速广大人群的痴呆症进展。这项研究的总体目标是
利用大规模 EHR 数据和先进的信息学技术开发 SCD 病例查找方法
并增进对其危险因素和老年人痴呆症结局的了解。初步数据
表明临床记录和机器学习 (ML) 算法有助于捕获早期患有
认知能力下降。然而,确定哪些 SCD 患者更有可能患上痴呆症是一项艰巨的任务
极具挑战性。在 K99 阶段,首要目标是开发一种信息学方法来识别
痴呆前队列(有认知问题证据但没有痴呆的患者)。第二个目标将
确定 EHR 中该队列的社会和临床特征以及先前的危险因素,以及
痴呆症结果的预测因子。这两个假设是 1) 临床状况(例如,神经精神疾病)
疾病、心血管疾病、肾脏疾病、呼吸道感染、睡眠障碍)和药物
有害地影响认知将导致认知能力下降的最初表现; 2)纵向,
多模式 EHR 数据可以在 ML 模型中利用,对痴呆症高风险患者进行分层。到
为了实现这些目标,申请人将利用案件识别、风险因素方面的现有优势
分析和预后建模,并获得三个关键培训领域的额外知识和技能:
(1) 认知能力下降和 ADRD,(2) 临床流行病学,(3) 统计方法。随着发展
这些技能,申请人将在 R00 阶段处于有利地位,以实现最终目标:学习
假定的 SCD 队列中的先行危险因素和 SCD 结局(患者既具有主观
认知问题和客观认知测量的正常表现)。与这些类似的方法
第二个目标中使用的数据将用于研究假定的 SCD 队列。高度创新的组成部分
该项目将先进的人工智能和大规模 EHR 数据用于假定的 SCD 队列
痴呆症的识别、危险因素分析和早期发现。拟议的研究将提供一些
首次深入了解 EHR 中 SCD 的特征和风险因素以及痴呆症的预测因素
SCD 的结果。对于申请人来说,该计划将支持通过以下方式快速过渡到独立:
短期强化培训和指导,这将与该组织的目标无缝地交织在一起
拟议的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liqin Wang其他文献
Liqin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liqin Wang', 18)}}的其他基金
Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
- 批准号:
10522731 - 财政年份:2022
- 资助金额:
$ 10.84万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant














{{item.name}}会员




