Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
基本信息
- 批准号:10686969
- 负责人:
- 金额:$ 10.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdoptionAdultAffectAgeAgreementAlgorithmsAlzheimer&aposs disease related dementiaAppearanceAreaArtificial IntelligenceAwardCardiovascular DiseasesCharacteristicsClinicalClinical InformaticsClinical TrialsCognitionCognitiveCohort StudiesDataDementiaDevelopmentDiagnosisEarly DiagnosisEarly InterventionElderlyElectronic Health RecordEnrollmentEnsureEpidemiologyExclusionExclusion CriteriaFactor AnalysisGleanGoalsHealth PersonnelHealthcare SystemsImpaired cognitionImpairmentIncidenceIndividualInformaticsInterventionInvestigationKidney DiseasesKnowledgeMachine LearningMeasuresMedicalMemory LossMentorshipMethodsNatural Language ProcessingNeurologyOutcomeParticipantPathway interactionsPatientsPerformancePharmaceutical PreparationsPhasePopulationPositioning AttributePrevalenceProceduresResearchResearch PersonnelRespiratory Tract InfectionsRiskRisk FactorsSamplingSleep DisordersStatistical MethodsSurveysSymptomsTechniquesTechnologyTestingTrainingbiomedical informaticscase findingclinical epidemiologycognitive testingcohortdementia riskexperiencehigh riskinnovationinsightlongitudinal analysismachine learning algorithmmachine learning modelmachine learning predictionmedical attentionmild cognitive impairmentmultimodalityneuropsychiatric disordernovel therapeuticsobservational cohort studyparticipant enrollmentpatient stratificationperformance testspre-clinicalprocess improvementprognostic modelprogramsrisk predictionrisk prediction modelskill acquisitionskillssocialtool
项目摘要
PROJECT SUMMARY
Early detection of Alzheimer’s disease and related dementias (ADRD) from electronic health records (EHRs)
can facilitate participant enrollment in clinical trials and early intervention once clinically available. Subjective
cognitive decline (SCD) can be an early manifestation of ADRD. Previous research in early detection of ADRD
has focused on observational study cohorts, generally small in size and often with stringent medical exclusion
criteria. Investigation of larger and more representative samples is needed to develop a full understanding of
the underlying conditions, procedures, and/or interventions that can contribute to cognitive decline or
accelerate progression to dementia in the population at large. The overall goal of this proposed research is to
leverage large-scale EHR data and advanced informatics technology to develop case-finding methods for SCD
and to advance the understanding of its risk factors and dementia outcomes in older adults. Preliminary data
suggest that clinical notes and machine learning (ML) algorithms can be helpful to capture patients with early
cognitive decline. However, identifying which patients with SCD are more likely to develop dementia is
extremely challenging. During the K99 phase, the first aim will be to develop an informatics approach to identify
a pre-dementia cohort (patients with evidence of a cognitive concern but no dementia). The second aim will
identify the social and clinical characteristics of this cohort in the EHR, along with antecedent risk factors, and
predictors for a dementia outcome. The two hypotheses are that 1) clinical conditions (eg, neuropsychiatric
disorders, cardiovascular diseases, renal disease, respiratory infections, sleep disorders) and medications that
deleteriously affect cognition will contribute to the initial appearance of cognitive decline; and 2) longitudinal,
multimodal EHR data can be leveraged in ML models to stratify patients with high risk of dementia. To
accomplish these goals, the applicant will leverage existing strengths in case identification, risk factor
analyses, and prognostic modeling and gain additional knowledge and skills in three critical areas of training:
(1) cognitive decline and ADRD, (2) clinical epidemiology, and (3) statistical methods. With the development of
these skills, the applicant will be well positioned in the R00 phase to conduct the final aim: to study the
antecedent risk factors and outcomes of SCD in a presumed SCD cohort (patients with both a subjective
cognitive concern and normal performance on objective cognitive measures). Similar approaches to those
used in the second aim will be employed to study the presumed SCD cohort. A highly innovative component of
this project is the use of advanced artificial intelligence and large-scale EHR data for presumed SCD cohort
identification, risk factor analyses, and early detection of dementia. The proposed study will provide some of
the first insights into the characteristics and risk factors of SCD in the EHR, and predictors for dementia
outcomes in SCD. For the applicant, this program will support a rapid transition to independence through a
short period of intensive training and mentorship, which will seamlessly intertwine with the aims of the
proposed project.
项目摘要
从电子健康记录(EHR)中早期发现阿尔茨海默病和相关痴呆(ADRD)
可以促进参与者在临床试验中的登记和一旦临床可用的早期干预。主观
认知能力下降(SCD)可能是ADRD的早期表现。ADRD早期检测的既往研究
主要集中在观察性研究队列,通常规模较小,通常有严格的医疗排除
的搜索.需要对更大和更具代表性的样本进行调查,以充分了解
可能导致认知能力下降的基础疾病、程序和/或干预措施,或
会加速老年痴呆症的发展这项拟议研究的总体目标是
利用大规模EHR数据和先进的信息技术,开发SCD病例发现方法
并进一步了解其风险因素和老年人痴呆症的后果。初步数据
这表明,临床笔记和机器学习(ML)算法可以帮助捕获早期患者,
认知能力下降然而,确定哪些SCD患者更有可能发展为痴呆症,
极具挑战性。在K99阶段,第一个目标是开发一种信息学方法,
痴呆前队列(有认知问题证据但无痴呆的患者)。第二个目标将
在EHR中识别该队列的社会和临床特征,沿着先前的风险因素,以及
痴呆症预后的预测因子这两个假设是:1)临床条件(例如,神经精神
疾病、心血管疾病、肾脏疾病、呼吸道感染、睡眠障碍)和
严重影响认知将有助于认知下降的最初出现;和2)纵向,
多模态EHR数据可以在ML模型中被利用来对具有高痴呆风险的患者进行分层。到
为了实现这些目标,申请人将利用现有的优势,在案件识别,风险因素
分析和预测建模,并在三个关键培训领域获得额外的知识和技能:
(1)认知功能减退和ADRD,(2)临床流行病学,(3)统计学方法。的发展
这些技能,申请人将很好地定位在R 00阶段进行的最终目标:研究
在假定的SCD队列中,SCD的前因风险因素和结局(同时具有主观
认知关注和客观认知测量的正常表现)。类似的方法,
将采用第二个目标中使用的方法研究假定的SCD队列。一个高度创新的组成部分,
该项目是使用先进的人工智能和大规模的EHR数据为假定的SCD队列
识别,风险因素分析和早期发现痴呆症。拟议的研究将提供一些
首次深入了解EHR中SCD的特征和风险因素,以及痴呆的预测因素
SCD的结果。对于申请人来说,该计划将通过以下方式支持快速过渡到独立
短期的强化培训和指导,这将无缝地与目标的
拟议项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liqin Wang其他文献
Liqin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liqin Wang', 18)}}的其他基金
Antecedents and Outcomes of Subjective Cognitive Decline: An Electronic Health Records and Artificial Intelligence Approach
主观认知下降的前因和结果:电子健康记录和人工智能方法
- 批准号:
10522731 - 财政年份:2022
- 资助金额:
$ 10.84万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 10.84万 - 项目类别:
Standard Grant














{{item.name}}会员




