Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
基本信息
- 批准号:10685949
- 负责人:
- 金额:$ 32.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Aromatic Amino AcidsArtificial IntelligenceBacteriaBiochemical ReactionBiomedical EngineeringCase StudyChorismate MutaseCommunitiesComputer ModelsComputing MethodologiesCytochrome P450DevelopmentDrug DesignEnzymesFutureGoalsKnowledgeMachine LearningMethodologyMethodsModelingOutputPathway interactionsPlayProteinsProtocols documentationPublishingQuantum MechanicsReactionResearchResourcesSeriesSystemTechniquesWorkXenobioticsantibiotic designdata formatdata miningdrug discoverydrug metabolismenzyme modelenzyme structureinnovationinsightmachine learning methodmachine learning modelmetalloenzymemodel designmolecular mechanicsprotein structure predictionprotonationsimulation
项目摘要
Project Summary/Abstract
Computational modeling methods have been widely applied in protein structure prediction, drug
discovery and enzyme bioengineering to provide atomic-level insight into enzymatic reactions and
functions. Accuracy and efficiency are the two goals that motivate the development of new
methods in this field. However, the methodological best practices are still lacking in achieving high
throughput and accuracy. In quantum mechanics/molecular mechanics (QM/MM) and QM-cluster
enzyme modeling, series of decisions such as molecule partitioning into QM and MM regions,
protonation states of residues, and computational setting rely on good understanding of the
problem and knowledge of the enzyme as well as available computational methods. In this
proposed project, machine learning methods will be applied in computational enzyme modeling
for a better and more systematic solution. The proposed project is innovative as it combines a)
data mining and machine learning on published experimental and computational works which will
efficiently and systematically collect knowledge for research; b) machine learning methods can
weigh different components of computational modeling and make optimal decisions automatically;
c) the results of this work will provide a rational strategy for accurate and efficient QM/MM and
QM-cluster simulations in future studies of different protein systems, drug design and even other
scientific research domains. The proposed project will focus on two enzyme systems that will
serve as case studies: a) Chorismate Mutase which is a potential target for designing antibiotics
and b) the Cytochrome P450 superfamily of metalloenzymes which are largely involved in drug
metabolism via various reaction mechanisms.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Glycine N-Methyltransferase Case Study: Another Challenge for QM-Cluster Models?
甘氨酸 N-甲基转移酶案例研究:QM 簇模型的另一个挑战?
- DOI:10.1021/acs.jpcb.3c04138
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cheng,Qianyi;DeYonker,NathanJ
- 通讯作者:DeYonker,NathanJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qianyi Cheng其他文献
Qianyi Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qianyi Cheng', 18)}}的其他基金
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10400454 - 财政年份:2022
- 资助金额:
$ 32.74万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 32.74万 - 项目类别:
Fellowship