Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
基本信息
- 批准号:10686146
- 负责人:
- 金额:$ 24.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAminesAreaArteriesAwardBiocompatible MaterialsBiologyBiomedical EngineeringBlood VesselsBlood capillariesCell Adhesion MoleculesCell CommunicationCellsCharacteristicsChargeChemicalsClinicalCouplingDevelopmentDoctor of PhilosophyDrug Delivery SystemsEndothelial CellsEndotheliumEnvironmentExtracellular MatrixFamilyFibrosisFormulationGoalsHealthHumanHydrogelsHypoxiaImmuneImmunologyImmunosuppressive AgentsIn VitroInfiltrationInflammationInflammatoryInflammatory ResponseInjectionsInjuryInjury to KidneyIntercellular adhesion molecule 1KidneyKidney TransplantationKineticsKnowledgeLeukocytesLong-Term EffectsMeasuresMediatingMentorsMethodsMolecularNatural regenerationNeutrophil InfiltrationNucleic AcidsOrganOrgan ModelOrgan TransplantationOutcomePathologyPenetrationPerfusionPhasePlacentaPolymersPostdoctoral FellowProductionProfibrotic signalReperfusion InjuryRiskRouteScienceSiteSmall Interfering RNASourceStructureSystemTechnical ExpertiseTherapeuticTissue ModelTissuesTrainingTransfectionTranslatingTransplantationTubular formationUniversitiesVascular Cell Adhesion Molecule-1Workbioscaffoldcell injuryclinical translationdelivery vehicledensitydesigngraft failurehuman modelhuman tissueimprovedin vivoin vivo Modelinhibitorinjuredinsightkidney cortexknock-downmeetingsnanoparticlenanoparticle deliverynanopolymernovelnucleic acid deliverypreventrational designregeneration potentialrenal damageresilienceresponseresponse to injurysiRNA deliverysmall moleculetargeted treatmenttherapeutic nanoparticlestherapeutic siRNAtherapy durationthree-dimensional modelingtooltranslation to humanstreatment strategyuptakevascular inflammation
项目摘要
Abstract
Ischemia reperfusion injury (IRI) causes endothelial inflammation and microvascular rarefaction that leads to
adverse kidney graft outcomes in organ transplant. Direct treatment of endothelial cells (EC) can reduce the
impact of IRI on the health of the graft, but there is a lack of EC targeted therapies that can effectively
intervene and alleviate the various modes of dysfunctional endothelial response. The goal of this work is to
develop a therapeutic strategy that addresses the two key modes of endothelial damage in response to IRI:
dysfunctional inflammation in ECs and damage to capillary networks, in a site-specific and temporary manner.
We propose that therapeutic siRNA can be delivered directly to endothelial cells using polymeric nanoparticles
(NPs), which provide a customizable platform to enhance the cell penetration and to sustain the delivery of
nucleic acids. In Aim 1, we will determine the NP characteristics utilizing a novel family of PACE polymers that
enable maximum and sustained siRNA to endothelial cells in order to reduce adhesion molecule expression
upon inflammatory activation. In Aim 2, we will translate this knowledge of structure/function relationship of the
NP to rationally design siRNA-mediated knockdown of adhesion molecules in relevant models of 3D human
vasculature and evaluate the long-term effect after transplantation in vivo. In the R00 phase of the award, the
principles determined in Aim 1 and 2 to impact endothelial-NP interaction will be applied to polymer NPs
delivered within a hydrogel delivery vehicle to the renal cortex. Aim 3 will investigate the potential of
endothelial-tailored siRNA-NPs to locally deliver anti-fibrotic siRNAs within an ECM-derived hydrogel to IRI-
damaged renal cortex in vivo.
Dr. Laura Bracaglia has earned her PhD in Bioengineering and is currently a postdoctoral fellow in the
Department of Biomedical Engineering at Yale University. In her training so far, she has studied NP and drug
delivery methods in human tissue models that provide translatable insights into vascular inflammation. To
successfully accomplish the specific aims of this proposal, Dr. Bracaglia has identified that she will need
additional training in the 1) chemical and polymer science aspects involved in the development of NPs. In
addition, the impact of the proposed work would be enhanced with training and expertise in 2) vascular
immune biology, 3) renal pathology and response to injury, and 4) translation to human immunology. To train in
these areas, Dr. Bracaglia has assembled a team of expert mentors who can provide clinical perspective and
technical expertise. In addition, she has planned key course work and set milestones for progress in scientific
and professional goals. This proposed training in the K99 mentored phase will support meeting the initial goals
of this work. NP treatment strategies developed during the mentored phase, together with her expertise in the
development of ECM-based biomaterials, will support the final aim of this proposal (R00).
摘要
缺血再灌注损伤(IRI)导致内皮炎症和微血管稀疏,从而导致
器官移植中肾移植的不良后果。直接治疗内皮细胞(EC)可以减少
IRI对移植物健康的影响,但缺乏有效的EC靶向治疗
干预和缓解血管内皮细胞功能失调的各种模式。这项工作的目标是
制定治疗策略,解决应对IRI的两种关键血管内皮损伤模式:
内皮细胞功能障碍炎症和毛细血管网络损害,以部位特异性和暂时性方式。
我们认为治疗性的sirna可以通过聚合物纳米颗粒直接输送到内皮细胞。
(NPS),它提供了一个可定制的平台,以增强蜂窝渗透率并维持交付
核酸。在目标1中,我们将利用一种新型的PACE聚合物家族来确定NP的特性
使最大和持续的siRNA作用于内皮细胞,以减少黏附分子的表达
在炎症激活时。在目标2中,我们将把这些关于结构/功能关系的知识转化为
NP在3D人体相关模型中合理设计siRNA介导的黏附分子敲除
并评价体内移植后的远期疗效。在颁奖的R00阶段,
目标1和目标2中确定的影响内皮-NP相互作用的原理将应用于聚合物纳米颗粒
通过水凝胶输送载体输送到肾皮质。目标3将调查以下方面的潜力
内皮定制的siRNA-NPs在ECM水凝胶中局部传递抗纤维化siRNA至IRI-
活体肾皮质受损。
Laura Bracaglia博士已获得生物工程博士学位,目前是
耶鲁大学生物医学工程系。到目前为止,在她的训练中,她学习了NP和毒品
人体组织模型中的传递方法,提供对血管炎症的可翻译见解。至
成功地实现了这项提案的具体目标,布拉卡利亚博士已经确定,她将需要
1)开发核燃料的化学和聚合物科学方面的额外培训。在……里面
此外,拟议工作的影响将通过培训和血管方面的专业知识而得到加强
免疫生物学,3)肾脏病理和损伤反应,以及4)人类免疫学翻译。在那里训练
在这些领域,Bracaglia博士组建了一个专家导师团队,他们可以提供临床观点和
技术专长。此外,她还规划了关键课程工作,并为科学进步设定了里程碑
和职业目标。K99指导阶段的这项拟议培训将支持实现初始目标
这部作品的价值。在指导阶段制定的NP治疗策略,以及她在
基于ECM的生物材料的开发,将支持本提案的最终目标(R00)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthetic polymer coatings diminish chronic inflammation risk in large ECM-based materials.
- DOI:10.1002/jbm.a.36564
- 发表时间:2019-03
- 期刊:
- 影响因子:4.9
- 作者:Bracaglia, Laura G.;Winston, Shira;Powell, Douglas A.;Fisher, John P.
- 通讯作者:Fisher, John P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Bracaglia其他文献
Laura Bracaglia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Bracaglia', 18)}}的其他基金
Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
将定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
- 批准号:
10657835 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:
Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
将定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
- 批准号:
10409705 - 财政年份:2021
- 资助金额:
$ 24.78万 - 项目类别:
Tailored siRNA delivery to human endothelium to inhibit and reverse inflammatory damage following ischemia reperfusion injury in the kidney
将定制的 siRNA 递送至人内皮细胞以抑制和逆转肾脏缺血再灌注损伤后的炎症损伤
- 批准号:
10190147 - 财政年份:2021
- 资助金额:
$ 24.78万 - 项目类别:
相似海外基金
More sustainable biocatalytic imine reductions to chiral amines with hydrogen-driven NADPH recycling operated in batch and continuous flow
通过批量和连续流操作的氢驱动 NADPH 回收,更可持续地生物催化亚胺还原为手性胺
- 批准号:
2889869 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Studentship
Organoborane-catalysed approaches to biologically active amines
有机硼烷催化制备生物活性胺的方法
- 批准号:
EP/Y00146X/1 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Research Grant
Transforming Amines into Complex Polycyclic Molecules and Bioactive Natural Products
将胺转化为复杂的多环分子和生物活性天然产物
- 批准号:
2247651 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Standard Grant
Ti-catalyzed cascading hydroaminoalkylation as a route to complex functionalized amines
Ti 催化级联氢氨基烷基化作为制备复杂官能化胺的途径
- 批准号:
10750347 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
New Photocatalytic C-C Bond-Forming Reactivity of Unprotected Primary Amines
未受保护伯胺的新光催化 C-C 键形成反应
- 批准号:
EP/X026566/1 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Research Grant
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 24.78万 - 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:
Alliance Grants
Development of Strategies for the Enantioselective Synthesis of Heterocycles and Acyclic Amines
杂环和无环胺对映选择性合成策略的发展
- 批准号:
10656344 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 24.78万 - 项目类别:














{{item.name}}会员




