Developing a renewable and dissectible human liver for the study of HBV/HCV infection
开发可再生、可解剖的人类肝脏用于研究 HBV/HCV 感染
基本信息
- 批准号:10686216
- 负责人:
- 金额:$ 48.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcute Liver FailureAddressAffectAgeAntiviral AgentsAreaCRISPR/Cas technologyCell CommunicationCell Culture TechniquesCell Differentiation processCell LineCellsCellularityChronic Hepatitis BCirrhosisClinicalCoculture TechniquesComplexDNA sequencingDevelopmentDiagnosticDiseaseDisease ProgressionEndothelial CellsEpidemiologyFibrosisFoundationsFutureGenesGeneticGenetic VariationGoalsHepaticHepatic Stellate CellHepatitis AHepatitis BHepatitis B InfectionHepatitis B TherapyHepatitis B VaccinesHepatitis B VirusHepatitis CHepatitis C TherapyHepatitis C co-infectionHepatitis C virusHepatitis DHepatitis E virusHepatitis VirusesHepatocyteHeterogeneityHumanIL18 geneIn VitroIndividualInfectionKupffer CellsLinkLiverLiver diseasesMacrophageMediatingMethodsModelingMolecularNatural ImmunityOutcomePatientsPersonsPopulationPrimary carcinoma of the liver cellsReportingResearchRiskSamplingSeveritiesSingle Nucleotide PolymorphismSystemTechnologyTimeTissue EngineeringTranslatingTreatment outcomeUnited StatesViralViremiaVirusWorkaging populationcareercell typechronic infectionchronic liver diseaseco-infectiondisease phenotypeepigenomicsgenetic variantgenome wide association studyhemodynamicshigh riskhuman modelhuman pluripotent stem cellimprovedin vivoindividual variationinfection riskinnovationinsightliver transplantationmortalitynovelpost-doctoral trainingresponsestemstem cellsthree dimensional cell culturetooltranscriptomicstransmission process
项目摘要
Project Summary
HBV and HCV infections are among the leading causes of chronic liver disease worldwide. In the United States,
it is estimated that over 850 thousand people are currently infected with HBV and more than 2.4 million for HCV.
Despite the availability of highly effective HBV vaccine and HCV treatment, the mortality and the burden
associated with HBV and HCV are nevertheless increasing as individuals with existing infections advance into
more advanced stages including fibrosis, cirrhosis, and HCC. Moreover, HCV-infected patients, even though
cured of viremia, remain at a significantly elevated risk for advanced liver diseases. Due to their shared modes
of transmission and epidemiological features, HBV and HCV frequently coexist in patients in endemic areas or
among subjects at high risk of infection. Coinfection is usually more complex than monoinfection, leading to an
accelerated disease progression and complicated viral interaction for their treatment.
Despite the severity of HBV and HCV infections, the mechanisms by which they lead to liver disease, of
how coinfection causes an increased severity and risk for complications, and of how HBV and HCV interact in
the liver of coinfected patients that may lead to reactivation of HBV upon the cure of HCV remains largely unclear.
This stems, in part, from the lack of relevant human models that recapitulate key disease phenotypes and permit
detailed mechanistic studies that could answer these questions.
The primary research goal of this proposal is to establish a novel, high fidelity multicellular in vitro liver
model to address the aforementioned gaps. In this system, we plan to coculture human pluripotent stem cells
(hPSCs)-derived hepatocytes, hepatic stellate cells, macrophages, and endothelial cells. Unlike existing
traditional cell culture models, we propose to create an innovative three dimensional platform that mimics the
liver’s multicellularity and microenvironment, by culturing these four cell types in a configuration that resembles
the liver’s in vivo spatial organization, its hemodynamics, and its cell-cell interaction. To distinguish cell type-
specific responses, we will develop methods to purify individual cell types for downstream analysis.
With this multicellular culture platform, we will pursue our long-range objectives, across which we capitalize
on the unique features of this novel platform to address questions that cannot be adequately answered with any
existing in vitro human-relevant system. These include the mechanisms of continued disease progression
following the cure of HCV infection, an accelerated disease progression with HBV/HCV coinfection, and the
interaction between HBV/HCV that leads to HBV reactivation following the cure of HCV infection (Aim 1). In Aim
2, we will combine hPSCs with gene editing to understand how genetic variants affect the course of disease and
treatment following HBV and HCV infection. These studies will not only provide new insights that could inform
development of effective diagnostics and treatments for HBV/HCV infection, but also lead to technology advance
that open up new avenues for future studies focusing on other liver diseases.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianfang Wu其他文献
Xianfang Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xianfang Wu', 18)}}的其他基金
Develop a human liver system to study SLC25A13 mutations in citrin deficiency
开发人类肝脏系统来研究柠檬酸缺乏症中的 SLC25A13 突变
- 批准号:
10724616 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Elucidating the mechanisms of intrinsic stem cell resistance to virus infection
阐明内在干细胞抵抗病毒感染的机制
- 批准号:
10327773 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
Elucidating the mechanisms of intrinsic stem cell resistance to virus infection
阐明内在干细胞抵抗病毒感染的机制
- 批准号:
10373121 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
Elucidating the mechanisms of intrinsic stem cell resistance to virus infection
阐明内在干细胞抵抗病毒感染的机制
- 批准号:
10002173 - 财政年份:2019
- 资助金额:
$ 48.3万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 48.3万 - 项目类别:
Standard Grant














{{item.name}}会员




