CRCNS: Resolving human face perception with novel MEG source localization methods

CRCNS:利用新颖的 MEG 源定位方法解决人脸感知问题

基本信息

项目摘要

A brief glimpse at a face quickly reveals rich multi-dimensional information about the person in front of us. How is this impressive computational feat accomplished? A recently revised neural framework for face processing suggests perception of face form information, i.e. face invariant features such as gender, age, and identity, are processed through the ventral visual pathway, comprising the occipital face area, fusiform face area, and anterior temporal lobe face area. However, evidence from fMRI remains equivocal about when, where, and how specific face dimensions of age, gender, and identity, are extracted. A key property of a complex computation is that it proceeds via stages and hence unfolds over time. We recently investigated the computational stages of face perception in a MEG study (Dobs et al., Nature Comms, 2019) and found that gender and age are extracted before identity information. However, this temporal information has yet to be linked to the spatial information available from fMRI because of limitations in current methods for spatial localization of MEG sources. Here, we propose to overcome these limitations and provide the full picture of how face computations unfold over both time and space in the brain by developing novel methods for localizing MEG sources, leveraging our team’s expertise in MEG and machine learning. In Aim 1 we will develop a new analytical MEG localization method called Alternating Projections that iteratively fits focal sources to the MEG data. In Aim 2 we will develop a novel data-driven MEG localization method based on geometric deep learning that reconstructs distributed cortical maps by learning statistical relationships in the non-Euclidean space of the cortical manifold. In Aim 3, we will first identify which method is most suitable to model human MEG face responses using fMRI face localizers as ground truth. We will then extract spatially and temporally accurate face processing maps to characterize the computational steps entailed in extracting age, gender, and identity information along the ventral visual pathway. A computationally precise characterization of the neural basis of face processing would be a landmark achievement for basic research in vision and social perception in humans. Insights into how face perception is accomplished in humans may further yield clues for how to improve AI systems conducting similar tasks. Further, the methods developed here may increase the power of MEG data to answer questions about the spatiotemporal trajectory of neural computation in the human brain.
只要瞟一眼对方的脸,就能迅速揭示这个人丰富的多维信息。这个令人印象深刻的计算壮举是如何完成的?最近修订的面部处理神经框架表明,面部形状信息的感知,即面部不变特征,如性别、年龄和身份,是通过腹侧视觉通路处理的,包括枕部面部区、梭状回面部区和前颞叶面部区。然而,功能磁共振成像的证据对于何时、何地以及如何提取年龄、性别和身份的特定面部维度仍然模棱两可。复杂计算的一个关键特性是它分阶段进行,因此随着时间的推移而展开。我们最近在一项MEG研究中研究了面部感知的计算阶段(Dobs等人,Nature Comms, 2019),发现性别和年龄在身份信息之前被提取。然而,由于目前MEG源空间定位方法的局限性,这种时间信息尚未与fMRI提供的空间信息联系起来。在这里,我们建议克服这些限制,并通过开发定位MEG源的新方法,利用我们团队在MEG和机器学习方面的专业知识,提供面部计算如何在大脑中随时间和空间展开的全貌。在目标1中,我们将开发一种新的分析性MEG定位方法,称为交替投影,迭代地将震源拟合到MEG数据中。在Aim 2中,我们将开发一种基于几何深度学习的新的数据驱动的MEG定位方法,该方法通过学习皮质流形的非欧几里得空间中的统计关系来重建分布式皮质映射。在目标3中,我们将首先确定哪种方法最适合使用fMRI面部定位器作为基础真值来模拟人类MEG面部反应。然后,我们将提取空间和时间上准确的人脸处理图,以表征沿腹侧视觉通路提取年龄、性别和身份信息所需的计算步骤。对人脸处理的神经基础进行精确的计算表征将是人类视觉和社会感知基础研究的里程碑式成就。对人类如何完成面部感知的深入了解,可能会进一步为如何改进执行类似任务的人工智能系统提供线索。此外,本文开发的方法可能会增加MEG数据的能力,以回答有关人脑中神经计算的时空轨迹的问题。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dimitrios Pantazis其他文献

Dimitrios Pantazis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dimitrios Pantazis', 18)}}的其他基金

CRCNS: Resolving human face perception with novel MEG source localization methods
CRCNS:利用新颖的 MEG 源定位方法解决人脸感知问题
  • 批准号:
    10397180
  • 财政年份:
    2021
  • 资助金额:
    $ 23.98万
  • 项目类别:
CRCNS: Resolving human face perception with novel MEG source localization methods
CRCNS:利用新颖的 MEG 源定位方法解决人脸感知问题
  • 批准号:
    10478133
  • 财政年份:
    2021
  • 资助金额:
    $ 23.98万
  • 项目类别:
MULTIVARIATE CONNECTIVITY ANALYSIS
多元连通性分析
  • 批准号:
    8363507
  • 财政年份:
    2011
  • 资助金额:
    $ 23.98万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了