Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
基本信息
- 批准号:10686184
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAlgorithmsAnatomic ModelsAnatomyBiomechanicsCessation of lifeClinicalComputer softwareDataDedicationsDiagnosisElasticityElementsEligibility DeterminationEnsureExcisionGoalsImageIncidenceInflammationInterventionInterventional ImagingLaboratoriesLiverLiver neoplasmsLocal TherapyLocationMagnetic ResonanceMalignant neoplasm of liverMapsMetastatic Neoplasm to the LiverMethodsModalityModelingMolecular ConformationMonitorMorphologic artifactsNormal tissue morphologyOperative Surgical ProceduresPatientsPhaseProceduresProgression-Free SurvivalsPublishingRecurrenceResidual NeoplasmSecond Primary CancersSeriesSurvival RateTechnologyTestingThermal Ablation TherapyTimeTissue ModelTissuesTractionTreatment EfficacyTumor TissueWaterWorkX-Ray Computed Tomographybiomechanical modelcurative treatmentsefficacy evaluationimage guidedimage registrationimaging probeimprovedinnovationliver ablationmathematical modelpost interventionrandomized, clinical trialsresponsestandard of caresuccesstooltumortumor ablationtumor progression
项目摘要
Primary and secondary liver cancers are increasing in incidence and are collectively responsible for over
1 million deaths per year worldwide. Among the curative treatments available for liver cancers, surgical resection
is considered the standard of care. Unfortunately, less than 20% of patients are eligible for such resection at the
time of the diagnosis. Image-guided percutaneous thermal ablation (PTA) has become a widely utilized option
for patients not eligible for surgery with local control success rates ranging from 55% to 85% (4-6).
In order to achieve optimal results following PTA, rates of residual tumor or recurrence should be
minimized (6, 8), which can be achieved by providing adequate minimal ablation margins around the tumor. To
meet this goal, it is critical to have high-quality intra-procedurally imaging that offers information in respect precise
definition of extent of the target tumor, confirmation of ablation probe placement at the target tumor(s), and
accurate ablation margins assessment. Currently, there are no commercially available tools that enable an
accurate method for tumor mapping and ablation assessment while taking in consideration biomechanical
conformational changes associated with the ablation therapy.
Based in our preliminary work, we hypothesize that local tumor control following ablation of liver cancers
will be improved with the application of a dedicated anatomical linear elastic biomechanical model for treatment
guidance and efficacy assessment by enabling accurate identification and targeting of the tumor and providing
intra-procedural assessment of the ablation, respectively. This hypothesis will be tested through three specific
aims. Firstly, we will optimize the anatomical modeling liver ablation guidance in the RayStation Platform by
validating the accuracy of the linear elastic biomechanical models of the liver for the application of mapping the
tumor defined on the pre-interventional images onto the intra-procedural images obtained just prior to ablation;
Secondly, we will evaluate the impact of this model on local tumor control following liver ablation by conducting
a phase II randomized clinical trial; Finally, we will optimize the biomechanical model to enable modeling of the
local changes in the tumor and surrounding normal tissue resulting from the ablation.
We believe that the integration of accurate, precise, and efficient biomechanical modeling tools to
determine the tumor location at the time of ablation and to monitor the ablation margin will improve local tumor
control rates in patients with liver cancers, potentially improving overall survival rates. The ability to perform
deformable image registration to map the tumor, identified on pre-intervention imaging, in the presence of
artifacts from the ablation probe and with little to no contrast within the liver presents a significant challenge to
most intensity-based algorithms. The use of a biomechanical-based model in this application is poised to make
a significant impact, potentially enabling local control for the 20% of patients who fail this therapy. The integration
of this technology into the RayStation platform ensures that this technology is widely available to patients.
原发性和继发性肝癌的发病率正在增加,它们共同导致了超过
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Study Protocol COVER-ALL: Clinical Impact of a Volumetric Image Method for Confirming Tumour Coverage with Ablation on Patients with Malignant Liver Lesions.
- DOI:10.1007/s00270-022-03255-3
- 发表时间:2022-12
- 期刊:
- 影响因子:2.9
- 作者:Lin, Yuan-Mao;Paolucci, Iwan;Anderson, Brian M.;O'Connor, Caleb S.;Rigaud, Bastien;Briones-Dimayuga, Maria;Jones, Kyle A.;Brock, Kristy K.;Fellman, Bryan M.;Odisio, Bruno C.
- 通讯作者:Odisio, Bruno C.
Intraprocedural Versus Initial Follow-up Minimal Ablative Margin Assessment After Colorectal Liver Metastasis Thermal Ablation: Which One Better Predicts Local Outcomes?
结直肠肝转移热消融后术中与初始随访最小消融边缘评估:哪一种更好地预测局部结果?
- DOI:10.1097/rli.0000000000001023
- 发表时间:2024
- 期刊:
- 影响因子:6.7
- 作者:Lin,Yuan-Mao;Paolucci,Iwan;AlbuquerqueMarquesSilva,Jessica;O'Connor,CalebS;Fellman,BryanM;Jones,AaronK;Kuban,JoshuaD;Huang,StevenY;Metwalli,ZeyadA;Brock,KristyK;Odisio,BrunoC
- 通讯作者:Odisio,BrunoC
Image-Guided Ablation for Colorectal Liver Metastasis: Principles, Current Evidence, and the Path Forward.
- DOI:10.3390/cancers13163926
- 发表时间:2021-08-04
- 期刊:
- 影响因子:5.2
- 作者:Lin YM;Paolucci I;Brock KK;Odisio BC
- 通讯作者:Odisio BC
Definitions of Computer-Assisted Surgery and Intervention, Image-Guided Surgery and Intervention, Hybrid Operating Room, and Guidance Systems: Strasbourg International Consensus Study.
- DOI:10.1097/as9.0000000000000021
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Giménez M;Gallix B;Costamagna G;Vauthey JN;Moche M;Wakabayashi G;Bale R;Swanström L;Futterer J;Geller D;Verde JM;García Vazquez A;Boškoski I;Golse N;Müller-Stich B;Dallemagne B;Falkenberg M;Jonas S;Riediger C;Diana M;Kvarnström N;Odisio BC;Serra E;Overduin C;Palermo M;Mutter D;Perretta S;Pessaux P;Soler L;Hostettler A;Collins T;Cotin S;Kostrzewa M;Alzaga A;Smith M;Marescaux J
- 通讯作者:Marescaux J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10356348 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 33.09万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10242684 - 财政年份:2019
- 资助金额:
$ 33.09万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 33.09万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 33.09万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 33.09万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 33.09万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.09万 - 项目类别:
Continuing Grant














{{item.name}}会员




