Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
基本信息
- 批准号:10242684
- 负责人:
- 金额:$ 33.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAlgorithmsAnatomic ModelsAnatomyBiomechanicsCessation of lifeClinicalComputer softwareDataDiagnosisElementsEnsureExcisionGoalsImageIncidenceInflammationInterventionLaboratoriesLiverLiver neoplasmsLocal TherapyLocationMagnetic ResonanceMalignant neoplasm of liverMapsMetastatic Neoplasm to the LiverMethodsModalityModelingMolecular ConformationMonitorMorphologic artifactsNormal tissue morphologyOperative Surgical ProceduresPatientsPhaseProceduresProgression-Free SurvivalsPublishingRandomized Clinical TrialsRecurrenceResidual TumorsSecond Primary CancersSeriesSurvival RateTechnologyTestingThermal Ablation TherapyTimeTissue ModelTissuesTreatment EfficacyTumor TissueWaterWorkX-Ray Computed Tomographybasebiomechanical modelcurative treatmentsefficacy evaluationimage guidedimage registrationimaging probeimprovedinnovationmathematical modelpost interventionresponsestandard of caresuccesstooltumortumor ablationtumor progression
项目摘要
Primary and secondary liver cancers are increasing in incidence and are collectively responsible for over
1 million deaths per year worldwide. Among the curative treatments available for liver cancers, surgical resection
is considered the standard of care. Unfortunately, less than 20% of patients are eligible for such resection at the
time of the diagnosis. Image-guided percutaneous thermal ablation (PTA) has become a widely utilized option
for patients not eligible for surgery with local control success rates ranging from 55% to 85% (4-6).
In order to achieve optimal results following PTA, rates of residual tumor or recurrence should be
minimized (6, 8), which can be achieved by providing adequate minimal ablation margins around the tumor. To
meet this goal, it is critical to have high-quality intra-procedurally imaging that offers information in respect precise
definition of extent of the target tumor, confirmation of ablation probe placement at the target tumor(s), and
accurate ablation margins assessment. Currently, there are no commercially available tools that enable an
accurate method for tumor mapping and ablation assessment while taking in consideration biomechanical
conformational changes associated with the ablation therapy.
Based in our preliminary work, we hypothesize that local tumor control following ablation of liver cancers
will be improved with the application of a dedicated anatomical linear elastic biomechanical model for treatment
guidance and efficacy assessment by enabling accurate identification and targeting of the tumor and providing
intra-procedural assessment of the ablation, respectively. This hypothesis will be tested through three specific
aims. Firstly, we will optimize the anatomical modeling liver ablation guidance in the RayStation Platform by
validating the accuracy of the linear elastic biomechanical models of the liver for the application of mapping the
tumor defined on the pre-interventional images onto the intra-procedural images obtained just prior to ablation;
Secondly, we will evaluate the impact of this model on local tumor control following liver ablation by conducting
a phase II randomized clinical trial; Finally, we will optimize the biomechanical model to enable modeling of the
local changes in the tumor and surrounding normal tissue resulting from the ablation.
We believe that the integration of accurate, precise, and efficient biomechanical modeling tools to
determine the tumor location at the time of ablation and to monitor the ablation margin will improve local tumor
control rates in patients with liver cancers, potentially improving overall survival rates. The ability to perform
deformable image registration to map the tumor, identified on pre-intervention imaging, in the presence of
artifacts from the ablation probe and with little to no contrast within the liver presents a significant challenge to
most intensity-based algorithms. The use of a biomechanical-based model in this application is poised to make
a significant impact, potentially enabling local control for the 20% of patients who fail this therapy. The integration
of this technology into the RayStation platform ensures that this technology is widely available to patients.
原发性和继发性肝癌的发病率正在增加,它们共同导致了
全球每年有100万人死亡。在可用于治疗肝癌的治疗方法中,手术切除
被认为是护理的标准。不幸的是,只有不到20%的患者有资格在
诊断的时间。图像引导经皮热消融(PTA)已成为一种广泛使用的选择
对于不符合手术条件的患者,局部控制成功率从55%到85%(4-6)。
为了达到PTA后的最佳效果,肿瘤残留或复发率应为
最小化(6,8),这可以通过在肿瘤周围提供足够的最小消融边缘来实现。至
为了达到这一目标,拥有高质量的过程内成像是至关重要的,它提供了关于精确的信息
确定靶肿瘤的范围,确认消融探头在靶肿瘤的放置(S),以及
准确的消融余量评估。目前,还没有商业上可用的工具来支持
考虑生物力学的肿瘤标测和消融评估的精确方法
与消融治疗相关的构象变化。
根据我们的初步工作,我们假设肝癌消融后局部肿瘤控制。
将通过应用专用解剖线弹性生物力学模型进行治疗而得到改善
通过实现对肿瘤的准确识别和靶向并提供
分别进行术中消融评估。这一假设将通过三个具体的
目标。首先,我们将在RayStation平台上对解剖建模肝脏消融导引进行优化,
肝线弹性生物力学模型在肝图应用中的准确性验证
将介入前图像上定义的肿瘤转移到消融前获得的术中图像上;
其次,我们将评估该模型对肝脏消融后局部肿瘤控制的影响。
第二阶段随机临床试验;最后,我们将优化生物力学模型,以便能够对
消融后肿瘤和周围正常组织的局部变化。
我们相信,集成准确、精确和高效的生物力学建模工具可以
在消融时确定肿瘤的位置并监测消融边缘将改善局部肿瘤
控制肝癌患者的死亡率,潜在地提高总体存活率。执行任务的能力
可变形图像配准以映射在介入前成像上识别的肿瘤
消融探头产生的伪影和肝脏内几乎没有对比度的伪影对
大多数基于强度的算法。在这一应用中使用基于生物力学的模型有望使
这是一个显著的影响,有可能使这种治疗失败的20%的患者能够进行局部控制。整合
将这项技术引入RayStation平台确保了这项技术在患者中的广泛应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10356348 - 财政年份:2022
- 资助金额:
$ 33.76万 - 项目类别:
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 33.76万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 33.76万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10686184 - 财政年份:2019
- 资助金额:
$ 33.76万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 33.76万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 33.76万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 33.76万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.76万 - 项目类别:
Continuing Grant














{{item.name}}会员




