Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
基本信息
- 批准号:10685960
- 负责人:
- 金额:$ 46.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureBiological MarkersCancer PatientCancer PrognosisCellsClinical DataComplexCopy Number PolymorphismDataDevelopmentDiseaseEcosystemEnvironmentGene ExpressionGenomicsGlioblastomaGoalsHeterogeneityImmuneImmunotherapyMagnetic Resonance ImagingMalignant - descriptorMalignant NeoplasmsMapsMethodsMolecular ProfilingNamesNeoplasm MetastasisNon-MalignantOutcomePatientsPeripheral Blood Mononuclear CellPhenotypePopulationPrognosisRadiogenomicsRecurrent tumorResolutionSamplingTherapeuticTissue ExtractsTumor-infiltrating immune cellsValidationWorkanticancer researchcancer cellcancer typecell typeclinical careclinically relevantconvolutional neural networkdeep learningdetection methodgenetic signatureimprovedinsertion/deletion mutationinsightnovelprognosticresponsesignal processingsingle cell sequencingsingle-cell RNA sequencingtranscriptometumor
项目摘要
Abstract:
Tumors are complex ecosystems composed of heterogeneous cell populations. Understanding the clonal cellular
composition of the tumor and the non-malignant cells within the tumor ecosystem provides significant insights in
the tumor recurrence, treatment, initiation, progression and metastasis. Previous studies estimated immune cell
type content in bulk tumor expression data using immune cell signatures generated from peripheral blood
mononuclear cells. However, with the advent of single-cell RNA sequencing methods, we can now also estimate
the tumor associated non-malignant and malignant cell type contents.
In this proposal, we describe a novel deep net approach for deconvolving different cell types in bulk tumor
using single-cell sequencing data (scDEC). We will also infer tumor associated copy number variation (CNV)
clones and their signatures from single-cell RNA sequencing data using our novel multiscale resolution signal
processing based algorithm. Our approach will estimate not only the content of different immune cell types and
tumor associated non-malignant cell types but also the content of different CNV clone types in bulk tumor.
Moreover, we will discover new associations between cell type content and sample phenotype such as disease
survival, subtype and outcome. Our proposed project will lead to major improvements in clinical care to guide
the treatment and prognosis of various types of cancer.
摘要:
肿瘤是由异质细胞群组成的复杂生态系统。了解克隆细胞
肿瘤生态系统内肿瘤和非恶性细胞的组成在
肿瘤的复发、治疗、起始、进展和转移。先前的研究估计免疫细胞
使用从外周血生成的免疫细胞签名在批量肿瘤表达数据中键入内容
单个核细胞。然而,随着单细胞RNA测序方法的出现,我们现在也可以估计
肿瘤相关的非恶性和恶性细胞类型的内容。
在这项建议中,我们描述了一种新的深度网络方法来去卷积实体瘤中不同类型的细胞。
使用单细胞测序数据(ScDEC)。我们还将推断肿瘤相关拷贝数变异(CNV)
使用我们新的多尺度分辨率信号从单细胞RNA测序数据中克隆及其签名
基于处理的算法。我们的方法将不仅估计不同免疫细胞类型的含量和
肿瘤相关的非恶性细胞类型以及不同CNV克隆类型在实体瘤中的含量也不同。
此外,我们将发现细胞类型含量和样本表型(如疾病)之间的新关联。
生存、亚型和结局。我们建议的项目将导致临床护理的重大改进,以指导
各种类型癌症的治疗和预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobo Zhou其他文献
Xiaobo Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobo Zhou', 18)}}的其他基金
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
9803214 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10226049 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10458544 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10117064 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
A Novel Informatics System For Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
10286746 - 财政年份:2017
- 资助金额:
$ 46.06万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
10199743 - 财政年份:2017
- 资助金额:
$ 46.06万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
9360750 - 财政年份:2017
- 资助金额:
$ 46.06万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
9751927 - 财政年份:2017
- 资助金额:
$ 46.06万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
10119971 - 财政年份:2017
- 资助金额:
$ 46.06万 - 项目类别:
Modelling the Growth of the MIC Niche at the System Level
在系统级别对 MIC 利基的增长进行建模
- 批准号:
9530895 - 财政年份:2012
- 资助金额:
$ 46.06万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 46.06万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 46.06万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 46.06万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 46.06万 - 项目类别:
Standard Grant