A Novel Informatics System For Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
基本信息
- 批准号:10286746
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAlzheimer’s disease biomarkerAmyloid beta-ProteinApolipoprotein EBiochemicalBioinformaticsBiological MarkersBiomechanicsBone TissueBrainBrain imagingCalvariaCellsCerebrovascular systemCerebrumClassificationComplexComputational TechniqueComputer ModelsCraniosynostosisDataData SetDatabasesDemyelinationsDevelopmentDiagnosisDiseaseDisease ProgressionElasticityElementsFutureGoalsHippocampus (Brain)HumanImageImpaired cognitionImpairmentInformaticsJudgmentKnowledgeLate Onset Alzheimer DiseaseLeadMachine LearningMagnetic Resonance ElastographyMagnetic Resonance ImagingMechanicsMemoryMemory LossMethodsModelingNerve DegenerationNeurofibrillary TanglesNeuronsOperative Surgical ProceduresParentsPatientsPhysiciansProcessPrognosisPropertyPublic HealthResearchResearch PersonnelRiskRisk FactorsSenile PlaquesSignal PathwayStagingStructureSurfaceSystemTechnologyTherapeuticThickThinnessTissuesVisualWorkabeta accumulationapolipoprotein E-4basebonebrain tissuebrain volumeclassification algorithmcognitive abilitydeep learningdesignhyperphosphorylated tauimaging biomarkerimaging geneticsimaging informaticsimaging studyimprovedlarge datasetslong short term memorymachine learning algorithmmachine learning methodmechanical propertiesmultiple data typesneuroimagingnovelnovel strategiespalliativetherapy designvector
项目摘要
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, cerebral
accumulation of amyloid-β peptide (Aβ) in senile plaques and hyper-phosphorylated tau in neurofibrillary tangles
(NFT). Since AD is a complex and multifactorial disease, large datasets with multiple data types have been
critical to identify its risk factors. For several decades, only the allele 4 of Apolipoprotein E (APOE), which is
present in about half of late-onset AD (LOAD) patients, has been convincingly demonstrated to affect risk for
LOAD. However, unfortunately, current treatments are just palliative because they do not slow down or halt the
disease progression. More research on biomarkers are urgently needed.
Data used in this study were obtained fromthe Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
Currently ADNI consortium opened MRI imaging data for over 2,000 AD patients from normal, mild, moderate
and severe stages. We plan to apply the AI and machine learning methods developed for craniosynostosis study
in the parent R01DE027027 to the ADNI data and try to segment and reconstruct the AD imaging data,
characterize the biomechanical property of brain in AD patients, and then further stratify the AD patients for
better therapy. This kind of idea was never applied to AD research, which could be a potential contribution to the
AD study.
Staging the AD disease is very important for design therapy strategy. There are numerous work studied
imaging genetics from the ADNI data sets and biomarker based staging technologies, but none of those work
studied the biomechanical property changes during the AD development. It has been observed by many
researchers and physicians that AD tissues tend to be less stiff and less elastic. Hence, there is an urgent need
to improve our understanding of the AD brain tissue property correlated to AD stages. Our immediate goal is to
develop computational model to characterize the AD patient specific tissue elasticity and AD stages. To achieve
these goals, our Specific Aims are: (1) to develop deep learning framework to obtain the brain volume and
surface of AD patients; (2) to develop computational techniques for estimating sub-region tissue stiffness directly
from AD imaging data; and to predict AD progression based on the biomechanical features of AD brain.
The scope of this NIA suppl. is within the scope of the parent R01DE027027 “eSuture system: A
novel informatics system for craniosynostosis (CSO) surgery.” The eSuture system focuses on
developing novel imaging informatics and machine leaning technologies to segment CSO imagining data, to
stratify and classify CSO patients, and to characterize the biomechanical property of calvarial bone tissue with
nonlinear finite element models.
摘要
阿尔茨海默病(AD)的特征在于进行性记忆丧失和认知能力下降,脑损害,
老年斑中淀粉样β肽(Aβ)的积累和神经元缠结中过度磷酸化的tau蛋白
(NFT)。由于AD是一种复杂且多因素的疾病,因此具有多种数据类型的大型数据集已被广泛应用于临床。
关键是要确定其风险因素。几十年来,只有载脂蛋白E(APOE)的等位基因4,
在大约一半的迟发性AD(LOAD)患者中存在,已令人信服地证明会影响
即可.然而,不幸的是,目前的治疗方法只是治标不治本,因为它们不能减缓或停止
疾病进展。迫切需要对生物标志物进行更多的研究。
本研究中使用的数据来自阿尔茨海默病神经影像学倡议(ADNI)数据库。
目前,ADNI联盟开放了2,000多名AD患者的MRI成像数据,
和严重的阶段。我们计划应用为颅缝早闭症研究开发的人工智能和机器学习方法
在父R 01 DE 027027中,将ADNI数据与AD成像数据进行比较,并尝试分割和重建AD成像数据,
描述AD患者脑的生物力学特性,然后进一步对AD患者进行分层,
更好的治疗这种想法从未应用于AD研究,这可能是一个潜在的贡献,
AD研究。
AD疾病的分期对于设计治疗策略是非常重要的。有许多研究工作
从ADNI数据集成像遗传学和基于生物标志物的分期技术,但这些都没有工作
研究AD发生过程中生物力学特性的变化。许多人都观察到,
研究人员和医生认为,AD组织往往不太僵硬,弹性也不太好。因此,迫切需要
以提高我们对AD脑组织特性与AD分期相关性的理解。我们的近期目标是
开发计算模型以表征AD患者特定的组织弹性和AD阶段。实现
对于这些目标,我们的具体目标是:(1)开发深度学习框架来获取大脑体积,
AD患者的表面;(2)开发用于直接估计子区域组织刚度的计算技术
从AD成像数据;并预测AD进展的基础上AD脑的生物力学特征。
本NIA供应品的范围在母产品R 01 DE 027027“eSuture system:A”的范围内。
新的颅缝早闭(CSO)手术信息系统。eSuture系统的重点是
开发新的成像信息学和机器学习技术来分割CSO成像数据,
对CSO患者进行分层和分类,并对颅骨组织的生物力学特性进行表征,
非线性有限元模型
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Sagittal Craniosynostosis Classification from CT Images Using Transfer Learning.
使用迁移学习对 CT 图像进行自动矢状颅缝早闭分类。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:You,Lei;Zhang,Guangming;Zhao,Weiling;R,MatthewGreives;David,Lisa;Zhou,Xiaobo
- 通讯作者:Zhou,Xiaobo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaobo Zhou其他文献
Xiaobo Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaobo Zhou', 18)}}的其他基金
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10685960 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
9803214 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10226049 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10458544 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
Multiscale Resolution and Deep Network Approaches for Deconvolving Different Cell Types in Bulk Tumor using Single-cell Sequencing Data (scDEC)
使用单细胞测序数据 (scDEC) 对块状肿瘤中不同细胞类型进行去卷积的多尺度分辨率和深度网络方法
- 批准号:
10117064 - 财政年份:2019
- 资助金额:
$ 39万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
10199743 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
A Novel Informatics System for Craniosynostosis Surgery
颅缝早闭手术的新型信息学系统
- 批准号:
9360750 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
9751927 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Integrative approach to studying LncRNA functions
研究 LncRNA 功能的综合方法
- 批准号:
10119971 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Modelling the Growth of the MIC Niche at the System Level
在系统级别对 MIC 利基的增长进行建模
- 批准号:
9530895 - 财政年份:2012
- 资助金额:
$ 39万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Directed Grant