Reliable AI for Medical Image Reconstruction
用于医学图像重建的可靠人工智能
基本信息
- 批准号:10687707
- 负责人:
- 金额:$ 143.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAnatomyArchitectureBrachial Plexus NeuropathiesBrachial plexus structureChestChondriteCollaborationsCommunitiesComputer Vision SystemsComputer softwareDataData CollectionData SetDevicesDisciplineDiseaseEmergency SituationHealthcareHospitalsIntelligenceKneeLigamentsMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMagnetismMedical ImagingModernizationMorphologic artifactsMotionMusculoskeletalNatural Language ProcessingNoisePathologyPatientsPrivatizationResearchScanningShoulderSystemTestingTimeTrainingUniversitiesUpper ExtremityWeightWristaccurate diagnosisclinical diagnosticscostdeep learningdeep neural networkdiagnostic accuracydiagnostic toolimage reconstructionimaging modalityimprovedintelligent algorithmmeniscal tearnerve supplynovelnovel diagnosticsopen sourceoperationpoint of carereconstructionsuccesstrustworthiness
项目摘要
Project Abstract/Summary
Deep neural networks have enjoyed wide empirical success in a variety of disciplines ranging from computer
vision to natural language processing. However, in medical imaging such as Magnetic Resonance Imaging (MRI),
a variety of challenges including lack of high-quality training data, lack of robustness to corruption/outliers and
distribution shifts between train and test time as well as documented lack of reliability and trustworthiness impede
the wide use and adaptation of AI. This project develops new deep learning-based architectures, algorithms and
training mechanisms that that deals with these challenges creating a new toolkit for MRI reconstruction that is
robust, reliable, trustworthy yet can be trained collaboratively and privately across multiple hospital systems.
Using this new toolkit the project addresses three major MRI reconstruction challenges (1) reducing acquisition
time via higher acceleration factors, (2) enabling high quality reconstruction even with low-intensity magnetic
elds, and (3) dealing with motion artifacts. In collaboration with Musculoskeletal (MSK) sections of a few
major universities, this project also involves gathering, curating and releasing new datasets and open source
reconstruction software aimed at addressing these key challenges. This will also help attract further research from
the machine learning/AI community to further improve this important medical imaging modality.
Healthcare Impact: This project will signi cantly enhance MRI which is an important diagnostic tool. (1)
reductions in the acquisition time will simultaneously increases both the accuracy of diagnosis and patient comfort.
(2) the reduction of noise/nonlinear artifacts caused by low- eld scanners will lead to a reduction in the size and
weight of the MR scanner. This may eventually allow MRI to be used at point of care or for emergency scenarios
at the bedside and also open up a plethora of new use cases. (3) reductions in the motion artifacts increases the
accuracy of diagnosis for a variety of new diseases and conditions enabling new diagnostic use cases for MRI. Also,
(1) allows more patients to receive a scan using the same machine and (2) lowers the cost of the magnet and the
space of operation of MR scanners. This can signi cantly reduce patient cost and thus increase the access to this
diagnostically important medical imaging modality. Furthermore, the focus on MSK data collection can greatly
facilitate accurate diagnosis of pathology such as subtle meniscal tears or chondrites in the knee, labral and rotator
cu tears in the shoulder, and ligament out tears in the wrist. The particular focus on brachial plexopathy is also
expected to have signi cant healthcare bene ts as the briachial plexus is an intricate anatomic structure with the
critical function of providing innervation to the upper extremity, shoulder, and upper chest. The brachial plexus
MRI study will enable great detail of this intricate anatomical structure with low/conventional eld strengths
which is of paramount importance in patient treatment, especially in traumatic settings.
项目摘要/摘要
深度神经网络在从计算机到计算机的各种学科中都取得了广泛的经验成功
视觉到自然语言处理。然而,在诸如磁共振成像(MRI)的医学成像中,
各种挑战,包括缺乏高质量的培训数据、缺乏对腐败/离群值的稳健性以及
列车和测试时间之间的分配偏差,以及记录的可靠性和可信性的缺乏阻碍了
人工智能的广泛使用和适应。该项目开发基于深度学习的新架构、算法和
应对这些挑战的培训机制为MRI重建创造了一个新的工具包,即
健壮、可靠、值得信赖,但可以跨多个医院系统进行协作和私下培训。
使用这个新的工具包,该项目解决了三个主要的MRI重建挑战(1)减少采购量
通过更高的加速系数缩短时间,(2)即使在低强度的磁场下也能实现高质量的重建
领域,以及(3)处理运动伪影。与几个肌肉骨骼(MSK)部分合作
这个项目还包括收集、管理和发布新的数据集和开放源码
旨在解决这些关键挑战的重建软件。这也将有助于吸引来自
机器学习/人工智能社区进一步改进这一重要的医学成像模式。
医疗保健影响:该项目将显著增强核磁共振成像这一重要的诊断工具。(1)
采集时间的缩短将同时提高诊断的准确性和患者的舒适度。
(2)低场强扫描仪引起的噪声/非线性伪影的减少将导致尺寸和
磁共振扫描仪的重量。这最终可能允许在护理点或紧急情况下使用磁共振成像
在床边,也打开了过多的新用例。(3)运动伪影的减少增加了
对各种新疾病和新情况的诊断准确性,使MRI能够实现新的诊断用例。另外,
(1)允许更多的患者使用相同的机器进行扫描,以及(2)降低磁铁和
磁共振扫描仪的操作空间。这可以显著降低患者成本,从而增加获得
具有重要诊断意义的医学成像设备。此外,对MSK数据收集的关注可以大大
有助于准确诊断病理,如膝部、唇部和旋转部的半月板撕裂或球粒陨石
CU肩部撕裂,手腕韧带撕裂。对臂丛神经病的特别关注也是
由于臂丛是一种复杂的解剖结构,具有明显的医疗保健价值
为上肢、肩部和上胸部提供神经支配的关键功能。臂丛神经
核磁共振研究将使这一复杂的解剖结构具有低/常规的老年强度的更详细的信息。
这在患者治疗中至关重要,特别是在创伤环境中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahdi Soltanolkotabi其他文献
Mahdi Soltanolkotabi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 143.44万 - 项目类别:
Research Grant