Sensory Augmentation, Restoration, and Modulation Using a Spinal Neuroprosthesis
使用脊柱神经假体进行感觉增强、恢复和调节
基本信息
- 批准号:10687329
- 负责人:
- 金额:$ 137.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAmericanAmputeesAnimalsBrainClinicalCuesDevelopmentDevicesDiseaseElectromagneticsEnvironmentEsthesiaFDA approvedFeasibility StudiesGoalsHumanIndividualInjuryIntuitionJust-Noticeable DifferencesLearningLifeLimb ProsthesisLocationLocomotionLower ExtremityMacaca mulattaMethodsMovementNervous System TraumaNeurologicNeurostimulation procedures of spinal cord tissueNumbnessPatientsPerceptionQuality of lifeRehabilitation therapyResearchResearch PersonnelRodentSensorySignal TransductionSpinalSpinal CordSpinal cord injuryStrokeTechnologyTestingTimeTrainingTraumatic Brain InjuryUltraviolet RaysVariantVertebral columnbrain machine interfacechronic pain managementclinical translationexperimental studyhuman subjectimplantationinfancyinnovationlimb amputationmagnetic fieldmotor controlnervous system disorderneuroprosthesisnon-Nativenovelpre-clinicalpreventrestorationsensory feedbackstandard of caretransmission process
项目摘要
Project Summary
The physical world contains signals encompassing the entire electromagnetic spectrum, and yet human
perception of the world is limited to our five senses. To augment our senses, it is essential to first develop
methods that can effectively transmit high-bandwidth information to the brain. Researchers working on brain-
machine interfaces have successfully extracted movement signals from the brain to control external devices.
Yet, methods that augment, restore, or modulate sensory perception are currently limited. Lack of real-time
sensory feedback from a brain-machine interface or neuroprosthetic device prevents optimal motor control and
thus limits sensorimotor rehabilitation. Loss of sensation due to life-altering injuries and disorders affects the
quality of life of millions of Americans. Thus, methods that mimic sensory signals and interface them directly with
the brain are an unmet clinical need. This project proposes a novel spinal sensory neuroprosthetic interface
using sensory spinal cord stimulation (SSCS) with the ability to augment, restore, and modulate sensory
perceptions. This radically innovative approach has the potential to impact a wide array of neurological conditions
by addressing sensory restoration and allows for the exploration of the limits of human sensory perception. Pre-
clinical experiments in rodents and rhesus monkeys demonstrated that animals learn to detect and discriminate
artificial sensations induced by SSCS. To achieve clinical translation of SSCS technology, this proposal involves
a feasibility study, conducted in patients undergoing spinal cord stimulator implantation for the treatment of
chronic pain. First, the relationship between SSCS-induced sensory perceptual thresholds, just-noticeable
differences, and stimulation parameters will be established (Goal 1). Second, human subjects will be trained to
detect and discriminate variations in signal intensity and orientation of non-native signals such as infrared, UV
light, magnetic fields, etc. using SSCS-induced perceptual sense, and ultimately subjects will learn to use these
novel perceptual abilities to navigate a spatial environment with non-native signal cues (Goal 2). Third, lower
limb amputee subjects will learn to intuitively perceive movement and location of their prosthetic limbs during
locomotion via real-time closed loop sensory feedback using SSCS (Goal 3). This project is innovative because
it uses FDA-approved technology (spinal cord stimulation) in a new context, all without changing the patient’s
standard-of-care. The ability to augment, restore, and modulate perceptions will be an unprecedented
development in the field of sensory neuroprosthetics. Successful execution of proposed goals will not only launch
a new line of augmentation research, but it will also showcase that SSCS can be widely applicable in the
rehabilitation of patients suffering from sensory deficits due to neurological disorders and injuries.
项目概要
物理世界包含涵盖整个电磁频谱的信号,但人类
对世界的感知仅限于我们的五种感官。为了增强我们的感官,首先必须发展
能够有效地将高带宽信息传输到大脑的方法。研究大脑的研究人员——
机器接口已成功从大脑中提取运动信号来控制外部设备。
然而,增强、恢复或调节感官知觉的方法目前还很有限。缺乏实时性
来自脑机接口或神经假体装置的感觉反馈阻碍了最佳的运动控制和
从而限制了感觉运动康复。由于改变生活的伤害和疾病而丧失感觉会影响
数百万美国人的生活质量。因此,模仿感觉信号并将其直接与
大脑的临床需求尚未得到满足。该项目提出了一种新型脊柱感觉神经假体接口
使用感觉脊髓刺激 (SSCS) 来增强、恢复和调节感觉
的看法。这种彻底创新的方法有可能影响多种神经系统疾病
通过解决感官恢复并允许探索人类感官知觉的极限。预
啮齿类动物和恒河猴的临床实验表明,动物学会了检测和辨别
SSCS 引起的人工感觉。为了实现SSCS技术的临床转化,该提案涉及
一项可行性研究,在接受脊髓刺激器植入治疗的患者中进行
慢性疼痛。首先,SSCS引起的感觉知觉阈值之间的关系,恰到好处
差异,并建立刺激参数(目标 1)。其次,人类受试者将接受训练
检测和区分非本地信号(例如红外线、紫外线)的信号强度和方向的变化
使用 SSCS 诱导的知觉来感知光、磁场等,最终受试者将学会使用这些
利用非本地信号线索导航空间环境的新颖感知能力(目标 2)。三、较低
截肢者将学会直观地感知假肢的运动和位置
使用 SSCS 通过实时闭环感觉反馈进行运动(目标 3)。这个项目之所以具有创新性是因为
它在新的环境中使用 FDA 批准的技术(脊髓刺激),所有这些都不会改变患者的
标准护理。增强、恢复和调节感知的能力将是前所未有的
感觉神经假体领域的发展。成功执行所提出的目标不仅会启动
一条新的增强研究路线,但它也将展示 SSCS 可以广泛应用于
因神经系统疾病和损伤而患有感觉缺陷的患者的康复。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amol P Yadav其他文献
Amol P Yadav的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 137.97万 - 项目类别:
Research Grant














{{item.name}}会员




