Harnessing stem cells and synthetic gene circuits to repair glomerular injury

利用干细胞和合成基因电路修复肾小球损伤

基本信息

  • 批准号:
    10687570
  • 负责人:
  • 金额:
    $ 142.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

More than 15% of U.S. adults suffer from chronic kidney disease (CKD) and end-stage kidney disease (ESKD), which costs more than $81 billion in annual Medicare expenditures (almost double the entire NIH budget). Worldwide, there are more patients with CKD (850 million) than diabetes (422 million), COVID-19 disease (584 million, August 2022), cancer (42 million), HIV/AIDS (36.7 million), and Parkinson’s disease (10 million). Compounding the overwhelming burden of CKD, there are no therapies proven to reverse or even halt CKD progression to ESKD. Currently, the only treatment options for ESKD are dialysis and kidney transplantation. Because survival on dialysis is limited (five to ten years), and access to organ transplantation is insufficient, many patients die while waiting for a kidney transplant. Innovative, high-risk, high-reward approaches, such as those proposed here, are needed to improve kidney disease outcomes. Progress in kidney medicine is limited by the lack of experimental models that can accurately recapitulate human physiological responses. Due to divergent developmental and functional molecular mechanisms, animal models often fail to faithfully replicate human kidney biology and drug responses. To address this significant limitation, research in my lab integrates technologies at the interface of human stem cell biology, organoids and organs-on-chips or tissue-chip microphysiological systems, and cellular reprogramming to help advance molecular-level understanding of kidney disease mechanisms and discover new therapeutic strategies. The most severe forms of kidney disease involve injury and irreversible damage to podocytes -- the terminally differentiated epithelial cells that encase glomerular capillaries and function together with the endothelium to regulate the removal of toxins and waste from the blood. Because podocytes do not replenish themselves naturally, damage to these cells (through drug side effects, viral infections, genetic and environmental risk factors) often progresses to CKD and organ failure. There is an urgent need to develop new tools to ease the social, economic, and clinical burden of kidney disease. This proposal offers strategies to repair and regenerate damaged kidney tissues by leveraging our stem cell-derived kidney models to uncover tunable molecular targets for cell-type-specific sensing and stimulation of tissue repair processes. We will extend these findings to engineer synthetic molecular circuits for autonomous repair of damaged podocytes and glomerular tissues to help restore the kidney’s blood filtration function. Consistent with the goals of the NIH Director’s New Innovator Award program, this proposal presents an unconventional approach to kidney biology and medicine by providing new avenues to repair and regenerate injured kidney tissues with biological relevance to humans. Accomplishing the goals of this study will represent a paradigm shift in research and clinical nephrology, providing opportunities to develop cell-autonomous strategies as new therapeutic modalities for kidney disease. Thus, the risks are justified by the magnitude of potential impact.
超过 15% 的美国成年人患有慢性肾病 (CKD) 和终末期肾病 (ESKD),每年的医疗保险支出超过 810 亿美元(几乎是整个 NIH 的两倍) 预算)。全球范围内,CKD 患者(8.5 亿)多于糖尿病(4.22 亿)和 COVID-19 患者 疾病(5.84 亿,2022 年 8 月)、癌症(4200 万)、艾滋病毒/艾滋病(3670 万)和帕金森病(10 百万)。没有任何疗法被证明可以逆转甚至停止,这加剧了 CKD 的巨大负担 CKD 进展为 ESKD。目前,ESKD 唯一的治疗选择是透析和肾病 移植。因为透析的生存期有限(五到十年),并且接受器官移植 由于肾移植不足,许多患者在等待肾移植期间死亡。创新、高风险、高回报 需要诸如此处提出的方法来改善肾脏疾病的结果。进展情况 肾脏医学因缺乏能够准确再现人类肾脏的实验模型而受到限制 生理反应。由于发育和功能分子机制的不同,动物 模型通常无法忠实地复制人类肾脏生物学和药物反应。为了解决这个重大问题 局限性,我实验室的研究整合了人类干细胞生物学、类器官的接口技术 器官芯片或组织芯片微生理系统以及细胞重编程以帮助推进 从分子水平了解肾脏疾病机制并发现新的治疗策略。 最严重的肾脏疾病涉及足细胞的损伤和不可逆的损伤 终末分化的上皮细胞包围肾小球毛细血管并与肾小球毛细血管一起发挥功能 内皮细胞调节血液中毒素和废物的清除。因为足细胞不会补充 自然地,对这些细胞的损害(通过药物副作用、病毒感染、遗传和 环境风险因素)通常会进展为 CKD 和器官衰竭。迫切需要开发新的 减轻肾脏疾病的社会、经济和临床负担的工具。该提案提供了以下策略: 利用我们的干细胞衍生肾脏模型来修复和再生受损的肾脏组织 用于细胞类型特异性传感和组织修复过程刺激的可调节分子靶标。我们将 将这些发现扩展到工程合成分子电路以自主修复受损的足细胞 和肾小球组织,帮助恢复肾脏的血液过滤功能。与 NIH 的目标一致 主任新创新者奖计划,该提案提出了一种非常规的肾脏生物学方法 和医学通过生物修复和再生受损肾组织提供新途径 与人类的相关性。实现本研究的目标将代表研究和研究范式的转变 临床肾病学,为开发细胞自主策略作为新的治疗方法提供了机会 肾脏疾病的治疗方法。因此,潜在影响的大小证明了风险的合理性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samira Musah其他文献

Samira Musah的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
  • 批准号:
    10065645
  • 财政年份:
    2023
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 142.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了