Measuring input-output operations of cortical neurons with large-scale neurotransmitter imaging

通过大规模神经递质成像测量皮质神经元的输入输出操作

基本信息

  • 批准号:
    10687664
  • 负责人:
  • 金额:
    $ 138.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Satisfying explanations of the physiological function of a tissue, which help guide medical interventions, frame that function in terms of the inputs of component cells and an algorithm for how those cells transform their inputs into outputs. Brain functions have so far eluded such mechanistic explanation, in part because 1) the component cells – neurons – each combine up to thousands of synaptic inputs to generate their output, and because 2) it is difficult to determine how any given neuron contributes to the function of the brain as a whole. As a result, we do not have explanations in the above terms for mammalian brain circuits, nor are we able to measure the input-output operations of even a single neuron in the mammalian brain. Addressing the above challenges will aid design of medical interventions in the brain, especially of therapeutic devices that must directly interface with neurons – so-called brain-machine interfaces (BMIs). I will address the first challenge by using sensitive new genetically encoded neurotransmitter indicators (GETIs) and a novel high-bandwidth in vivo microscope to simultaneously record the activity of thousands of synaptic inputs and outputs within individual neurons in the cortex of behaving mice. I will build on my recent work developing a high-sensitivity GETI for glutamate by developing a spectrally-compatible pair of GETIs for glutamate and GABA. I will complete the development of the 2nd generation Scanned Line Projection Microscope (SLAP2), an in vivo microscope that will accurately and efficiently record from thousands of synapses in 3D at >100 Hz. Together these tools will make it possible to directly see, at high speed, the precise timing and location of myriad neurotransmitter inputs to a neuron, observe how those inputs line up to drive firing, and watch in real-time as inputs change with learning. To overcome the second challenge and enable reliable access to neurons with a known contribution to a behavior, I will adopt a rapidly-trained BMI- based learning task in which a mouse learns to activate a single target cortical neuron in a specific context. I will use high-bandwidth GETI imaging to study how the target neuron’s synaptic inputs and input-output operations change with learning. Moreover, I will adapt the BMI task to instead train neurons to perform an experimenter-selected input-output operation, to thereby investigate what types of input-output operations individual neurons can learn. These technologies combined will establish a new experimental paradigm with nearly limitless possibilities for studying neural computation and learning. I will use these tools to ask: 1) How are behaviorally- relevant input-output operations - the individual steps of neural algorithms - implemented within the cortex? 2) How do cortical neurons learn to perform a specific input-output operation? 3) What operations can individual cortical neurons learn to perform? and 4) Can we use the resulting knowledge to develop more effective BMIs?
项目总结/摘要 对组织生理功能的满意解释有助于指导医疗干预, 它根据组成细胞的输入和这些细胞如何将其 投入转化为产出。到目前为止,大脑的功能还没有得到这样的机械解释,部分原因是:1) 组成细胞-神经元-每个联合收割机组合多达数千个突触输入以产生它们的输出, 因为2)很难确定任何给定的神经元如何对整个大脑的功能做出贡献。 因此,我们无法用上述术语来解释哺乳动物的大脑回路,也无法 测量哺乳动物大脑中单个神经元的输入输出操作。解决上述 这些挑战将有助于设计大脑中的医疗干预措施,特别是必须 直接与神经元接口-所谓的脑机接口(BMI)。 我将通过使用敏感的新基因编码的神经递质指标来解决第一个挑战 (GETI)和一种新型的高带宽体内显微镜,以同时记录数千个 行为正常的小鼠大脑皮层中单个神经元的突触输入和输出。我将在我最近的 通过开发一对光谱兼容的GETI, 谷氨酸和GABA。我将完成第二代扫描线投影的开发 显微镜(SLAP 2),一种体内显微镜,将准确,有效地记录从数千个 3D中的突触频率>100 Hz。这些工具一起将使人们有可能直接看到,在高速, 精确的时间和位置的无数神经递质输入到神经元,观察这些输入如何排队, 驱动点火,并实时观察输入随学习而变化。为了克服第二个挑战, 使可靠的访问神经元与一个已知的贡献的行为,我将采用快速训练的BMI- 基于学习的任务,其中小鼠学习在特定背景下激活单个目标皮层神经元。我 将使用高带宽GETI成像来研究目标神经元的突触输入和输入输出 操作随着学习而改变。此外,我将调整BMI任务,以训练神经元来执行一个 实验者选择的输入输出操作,从而调查什么类型的输入输出操作 单个神经元可以学习。 这些技术的结合将建立一个新的实验范式, 研究神经计算和学习的可能性。我将使用这些工具来问:1)行为如何- 相关的输入输出操作-神经算法的各个步骤-在皮层内实现?(二) 皮层神经元如何学习执行特定的输入输出操作?3)哪些操作可以单独 皮层神经元学习执行什么以及4)我们能否使用由此产生的知识来开发更有效的BMI?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kaspar Podgorski其他文献

Kaspar Podgorski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 138.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了