Ingestible gastric-resident electronic metamaterials architecture (iGEM) for the treatment of obesity
用于治疗肥胖症的可摄入胃驻留电子超材料架构(iGEM)
基本信息
- 批准号:10688246
- 负责人:
- 金额:$ 34.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbdominal PainAdultAffectAirAnimal ModelArchitectureBiochemicalBody WeightBody Weight decreasedCardiovascular DiseasesChemicalsChronic DiseaseClinicalClinical ResearchComplexConsumptionDataDevicesDiabetes MellitusDissociationDoctor of PhilosophyDosage FormsEffectivenessElectric CapacitanceElectronicsEligibility DeterminationEndoscopyEnvironmentExcisionExcretory functionFeedbackFeelingFoundationsGastric BalloonGoalsHealthcareHybridsHypertensionImplantInterventionIntestinal ObstructionMagnetismMeasurementMeasuresMechanicsMetabolicMethodologyMonitorMorbidity - disease rateNauseaObesityObesity associated diseaseOperative Surgical ProceduresOralOral IngestionOutcomePatient SelectionPatientsPerforationPerformancePrintingQuality of lifeRefluxReportingResearchRiskRisk FactorsRuptureSafetySalineSatiationSerious Adverse EventStentsStomachStructureSystemTemperatureTimeTreatment EffectivenessUlcerVomitingWorkbariatric surgerybiomaterial compatibilitycostdesigndigitalexperiencegastrointestinal symptomimprovedinventionnovelobesity treatmentporcine modelprematurepressurepressure sensorpreventprogramsrational designresidencesensorsimulationtreatment strategywirelesswireless sensor
项目摘要
Project Summary
Obesity affects more than 1.4 billion adults worldwide and is a significant risk factor for chronic diseases such
as hypertension, diabetes, and cardiovascular diseases. Present non-operative treatment options of obesity are
woefully inadequate. Bariatric surgery is effective but invasive, costly, and associated with significant morbidity.
Intragastric balloons (IGB) have been demonstrated to be effective in enabling temporary weight loss (~25-30%
of excess body weight), allowing the improvement of metabolic parameters. However, IGB is a passive
mechanical construct that cannot be monitored or controlled upon insertion and require endoscopy delivery.
These fundamental attributes limit the reach of IGB to very selected patients as a temporary treatment or as a
bridging intervention to bariatric surgery despite its effectiveness. The proposed research will overcome the
fundamental limitations of IGB by creating an ingestible gastric-resident electronic-enhanced metamaterial
architecture (iGEM). In stark contrast to the current strategies, iGEM can transform obesity treatment with a
digital-based personalized and dynamic treatment strategy. iGEM allows the dynamic tuning of gastric restrictive
effect, which can be optimized based on safety consideration, patient’s treatment goals, and the quality of life
desired. For example, feedback-based control of the device distension can prevent excessive pressure point or
over-inflation that may lead to ulcer formation; or to avoid intestinal obstruction due to premature disintegration.
The ability to adjust gastric restrictive pressure can enhance treatment effectiveness to account for gastric
accommodation. The ability to acquire sensing data can help elucidate the complex relationship between the
restrictive effect of intragastric devices and treatment effectiveness. This research leverages Kong’s expertise
in creating entirely 3D printable electronics and ingestible electronics, (2) Wang’s (Ph.D.) expertise in meta-
materials design, and (3) Fang’s (M.D.) extensive clinical and clinical research experience in IGB usage and
intragastric devices. Specifically, we will (1) develop wireless resonant-enhanced 3D printable gastric pressure
sensors with a hybrid core-shell printing methodology that allow the integration of pressure sensors on a wide
range of intragastric systems; (2) develop wirelessly triggered transformable active metamaterials architecture
that is capable of achieving wirelessly triggered reversible structural reconfiguration, allowing the oral ingestion
of the device, dynamic control of expansion to tailor gastric restriction effect and the safe excretion of the device
without risk of intestinal obstruction; (3) develop and evaluate iGEM longitudinal wireless pressure sensing and
triggerable volume control capability that can sustain the complex and dynamic gastric environment for a
prolonged period of time (30 days). Upon completion of the proposed research, the foundation established by
this proposed work is also applicable to include a wide range of inductance/capacitance-based sensors
(temperature, biochemical, bacterial), as well as various ingestible or implantable systems such as stents,
enabling multivariate longitudinal sensing and unprecedented control.
项目摘要
肥胖影响着全球超过14亿成年人,是慢性疾病的重要风险因素,
如高血压、糖尿病和心血管疾病。目前肥胖症的非手术治疗选择有
严重不足。减肥手术是有效的,但侵入性,昂贵,并与显着的发病率。
胃内球囊(IGB)已被证明可有效实现暂时性体重减轻(约25-30%)
过量体重),允许代谢参数的改善。然而,IGB是被动的
插入时无法监测或控制的机械结构,需要内窥镜输送。
这些基本属性限制了IGB作为临时治疗或作为治疗药物的范围,
尽管减肥手术很有效,但它是一种过渡性干预。这项研究将克服
通过创建可摄入的胃驻留电子增强超材料来实现IGB的基本限制
iGEM架构。与目前的策略形成鲜明对比的是,iGEM可以通过
基于数字化的个性化和动态治疗策略。iGEM允许动态调整胃限制性
效果,可根据安全性考虑、患者治疗目标和生活质量进行优化
需要的话例如,对装置扩张的基于反馈的控制可以防止过度的压力点或收缩。
过度充气可能导致溃疡形成;或避免由于过早崩解而导致肠梗阻。
调节胃限制性压力的能力可以提高治疗效果,以解释胃粘膜的损伤。
住宿.获取感测数据的能力可以帮助阐明
胃内装置的限制作用和治疗有效性。这项研究利用了孔的专业知识
在创造完全3D打印的电子产品和可摄取的电子产品,(2)王的(博士)在Meta-
材料设计,以及(3)方(医学博士)在IGB使用方面具有丰富的临床和临床研究经验,
胃内装置。具体来说,我们将(1)开发无线共振增强3D打印胃压
具有混合核-壳印刷方法的传感器,该方法允许在宽范围内集成压力传感器。
一系列胃内系统;(2)开发无线触发的可转换有源超材料架构
能够实现无线触发的可逆结构重构,
动态控制扩张以适应胃限制效果和装置的安全排泄
无肠梗阻风险;(3)开发和评估iGEM纵向无线压力传感,
可持续的容量控制能力,可维持复杂和动态的胃环境,
长期(30天)。在拟议的研究完成后,
所提出的这项工作也适用于包括各种基于电感/电容的传感器
(温度、生物化学、细菌),以及各种可摄取或可植入系统,例如支架,
从而实现多变量纵向感测和前所未有的控制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ingestible Functional Magnetic Robot with Localized Flexibility (MR‐LF)
- DOI:10.1002/aisy.202200166
- 发表时间:2022-09
- 期刊:
- 影响因子:7.4
- 作者:Taylor E. Greenwood;Henry Cagle;Benson Pulver;O. S. Pak;Y. L. Kong
- 通讯作者:Taylor E. Greenwood;Henry Cagle;Benson Pulver;O. S. Pak;Y. L. Kong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONG LIN KONG其他文献
YONG LIN KONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 34.28万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 34.28万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 34.28万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 34.28万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 34.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 34.28万 - 项目类别:
Standard Grant