Augmem: A Novel Digital Cognitive Assessment for the Early Detection of Alzheimer's Disease
Augmem:一种用于早期检测阿尔茨海默病的新型数字认知评估
基本信息
- 批准号:10688227
- 负责人:
- 金额:$ 96.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAchievementAdministratorAducanumabAdultAgeAgingAlzheimer disease detectionAlzheimer&aposs DiseaseAlzheimer&aposs Disease PathwayAlzheimer&aposs disease careAlzheimer&aposs disease diagnosisAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmericanAmyloidArchitectureAutopsyBiologicalBiological MarkersBrainCaregiver BurdenClassificationClinicalClinical TrialsClinical Trials DesignCodeCognitiveCollaborationsCollectionComputer softwareDataData AnalyticsData CollectionData ScientistDementiaDevelopmentDigital biomarkerDimensionsDiseaseEarly DiagnosisEarly InterventionElderlyEpisodic memoryEvaluationGoalsHealthHealthcare SystemsHippocampusImmunotherapyImpaired cognitionImpairmentInfrastructureIntelligenceMRI ScansMarketingMeasuresMedicaidMedical DeviceMedicareMemoryModelingMonitorNeurobiologyNeurofibrillary TanglesNeuropsychologyParticipantPatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhasePopulationPrediction of Response to TherapyPreventionProbabilityProcessPropertyPsychometricsPublic HealthQualifyingRegulatory PathwayResearchSamplingSecureSenile PlaquesSmall Business Innovation Research GrantSocial SciencesStratificationSurveysSymptomsTechniquesTechnologyTestingTherapeuticTrainingTreatment ProtocolsUnited StatesWorkage groupbaby boomercare costsclinical careclinical outcome assessmentcognitive testingcommercializationdata cleaningdiagnostic tooldigitaldigital deliveryearly detection biomarkerseconomic costeffective therapyevidence basefeature extractionfeature selectionhealth applicationhigh resolution imaginghuman old age (65+)improvedinnovationlarge scale datamodel buildingneuralnovelnovel therapeuticspatient stratificationpaymentpre-clinicalpredictive modelingprodromal Alzheimer&aposs diseaseprospectiverecruitstandard of caretau Proteinstooltreatment response
项目摘要
Summary: Definitive diagnosis of Alzheimer’s Disease (AD) is currently conferred upon autopsy. Probable AD
diagnosis is based on a combination of clinical/cognitive measures, often corroborated by structural MRI scans.
Limitations of current neuropsychological and clinical tools for precise and early indications of cognitive decline
in AD provide the impetus for our focus on developing improved cognitive assessments that are easy to use
across platforms, age groups, and diverse cultural groups, and provide an earlier and more accurate indication
of preclinical disease. Early diagnosis and intervention are critical for therapeutics to be maximally effective
despite the dearth of new therapeutic options for AD. Augnition Labs is developing the Augmem™ digital
biomarker platform based on work by Dr. Yassa and colleagues that empirically demonstrated, using a pattern
separation task, that the chief function of the hippocampus is pattern separation – the ability to discriminate
among similar memories by storing them using unique neural codes. We have developed, validated, and
demonstrated the utility of a full suite of pattern separation tasks across the three key dimensions of episodic
memory, (1) what happened (object), (2) where it happened (spatial), and (3) when it happened (temporal). Prior
work has been neurobiologically validated with high resolution imaging as well as clinically validated against
traditional clinical memory measures. In this Direct to Phase II SBIR, we incorporate object, spatial, and temporal
pattern separation techniques with feature-rich AI models to produce a more effective digital biomarker for the
early prediction of cognitive decline and treatment response. Aim 1. Develop and launch secure and scalable
Augmem™ platform. We will develop and implement test management architecture and study administration
modules in support of data collection, quality checks, and data analytics. A commercially ready front-end
interface for digital delivery of assessments will be iteratively developed and tested. Goal: Completion of User
Acceptance Testing with recruited user personas (study participant, study administrator, data scientist), and
initiation of FDA regulatory pathway for Clinical Outcome Assessment qualification. Aim 2. Develop and train
AI models for predicting subtle impairments based on cognitive and biomarker profiles. Data collection,
data cleaning, feature extraction and selection, model building, and model evaluation and analysis will
incorporate object, spatial, and temporal pattern separation measures from data collected through the Precision
Aging Network as well as directly by Augnition. Goal: A representative sample of up to 500,000 participants
across the age spectrum of 18-85, AI engine training, and achievement of predictive accuracy for age of 0.85
ROC AUC (classification) and RMSE ≤ 0.3 (regression). Upon successful completion of the proposed
development, we will conduct prospective trials in preclinical/prodromal Alzheimer’s disease to fully validate the
predictive power of the Augmem™ platform and initiate the Software as a Medical Device FDA regulatory
pathway for AD early detection, stratification, and prediction of treatment response.
摘要:阿尔茨海默病(AD)的明确诊断目前是通过尸检来确定的。可能是AD
诊断是基于临床/认知措施的组合,通常得到结构性核磁共振扫描的证实。
当前神经心理学和临床工具对认知功能下降的精确和早期指征的局限性
在AD中为我们提供动力,使我们专注于开发易于使用的改进认知评估
跨平台、跨年龄段、跨文化群体,并提供更早、更准确的指示
临床前疾病。早期诊断和干预是治疗取得最大效果的关键
尽管缺乏治疗阿尔茨海默病的新方法。Augnition Labs正在开发Augmem™数字
基于Yassa博士和他的同事的工作的生物标记物平台,使用一种模式进行了经验演示
分离任务,即海马体的主要功能是模式分离--辨别能力
通过使用独特的神经编码存储它们,从而在相似的记忆中进行识别。我们已经开发、验证和
演示了全套模式分离任务在剧集的三个关键维度上的实用性
记忆,(1)发生了什么(物体),(2)发生在哪里(空间),和(3)发生时(时间)。之前
这项工作已经用高分辨率成像进行了神经生物学验证,并在临床上得到了验证
传统的临床记忆测量方法。在这个直接到第二阶段的SBIR中,我们将对象、空间和时间结合在一起
模式分离技术与特征丰富的人工智能模型,以产生更有效的数字生物标志物
早期预测认知功能下降和治疗反应。目标1.开发和发布安全且可扩展的
Augmem™平台。我们将开发和实施测试管理架构和学习管理
支持数据收集、质量检查和数据分析的模块。商业上准备好的前端
将反复开发和测试数字交付评估的界面。目标:完成用户
使用招募的用户角色(研究参与者、研究管理员、数据科学家)进行验收测试,以及
启动FDA临床结果评估资格的调控途径。目标2.发展和培训
基于认知和生物标记物特征预测细微损伤的AI模型。数据收集,
数据清理、特征提取和选择、模型构建以及模型评估和分析将
从通过Precision收集的数据中整合对象、空间和时间模式分离措施
老化网络以及直接点火。目标:多达500,000名参与者的代表性样本
在18-85岁的年龄范围内,接受人工智能引擎培训,并实现对0.85岁的预测准确性
ROC AUC(分类)和RMSE≤0.3(回归)。在成功完成建议的
开发中,我们将对临床前/先兆阿尔茨海默病进行前瞻性试验,以充分验证
奥格梅姆™平台的预测能力和启动该软件作为医疗器械FDA的监管
AD早期检测、分层和治疗反应预测的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adele Gilpin其他文献
Adele Gilpin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adele Gilpin', 18)}}的其他基金
Augmem: A Novel Digital Cognitive Assessment for the Early Detection of Alzheimer's Disease
Augmem:用于早期检测阿尔茨海默病的新型数字认知评估
- 批准号:
10545457 - 财政年份:2022
- 资助金额:
$ 96.07万 - 项目类别:
相似海外基金
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
- 批准号:
24K14615 - 财政年份:2024
- 资助金额:
$ 96.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335800 - 财政年份:2024
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
- 批准号:
2244734 - 财政年份:2023
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
- 批准号:
23K16740 - 财政年份:2023
- 资助金额:
$ 96.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
- 批准号:
2300738 - 财政年份:2023
- 资助金额:
$ 96.07万 - 项目类别:
Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
- 批准号:
2890475 - 财政年份:2023
- 资助金额:
$ 96.07万 - 项目类别:
Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
- 批准号:
2225178 - 财政年份:2023
- 资助金额:
$ 96.07万 - 项目类别:
Continuing Grant














{{item.name}}会员




