SCH: AI-DOCTOR COLLABORATIVE MEDICAL DIAGNOSIS

SCH:AI-医生协同医疗诊断

基本信息

  • 批准号:
    10688087
  • 负责人:
  • 金额:
    $ 21.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-22 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Recent retrospective studies show that radiology's diagnostic error rates did not decrease significantly over the years. For example, missed lung cancer rates remain at 20-60% on chest radiography dependent on study design. This error contributes to 40,000-80,000 deaths annually in U.S. hospitals. This project aims to develop a computational framework for Al to collaborate with human radiologists on medical diagnosis tasks. To achieve this goal, we divide the project into three Aims, where the first two focus on fundamental theories, and the last one evaluates the proposed approaches on targeted applications. Aim 1: Develop computational principles for optimal Al-radiologist interaction. This Aim will develop a computational framework for guiding the interaction between radiologists and Al to achieve the best possible diagnostic performance while minimizing the time burden. Our framework consists of the first method for reverse-engineering radiologists' intention from the joint gaze and visual information based on reinforcement learning. This Aim is the first to provide an integrated system with gaze sensing, deep networks, and human radiologists. The knowledge from this Aim will fundamentally transform how one would build collaborative medical diagnosis systems. Aim 2: Design a user-friendly and minimally-interfering interface for radiologist-Al interaction. This Aim addresses an essential question of designing a minimally interfering interface that allows human radiologists to interact with Al models efficiently. Our proposed system combines an innovative "multimodal thinking with audio and gaze" (MTAG) methodology with user-centered iterative design. The process will result in a novel radiologist-Al collaborative interface that maximizes time efficiency while minimizing the amount of distraction. The outcome of this Aim will shed light on design principles for systems involving radiologists. Aim 3: Evaluation Plan. This Aim evaluates the proposed approaches in Aim 1-2 on two clinically important applications: i) Lung nodule detection and ii) pulmonary embolism. Lung cancer is the second most common cancer, and pulmonary embolism is the third most common cause of cardiovascular death. Studying how radiologists collaborate with Al to reduce diagnostic errors will lead to significant clinical impacts. RELEVANCE (See instructions): Diagnostic errors contribute to 40,000-80,000 deaths annually in U.S. hospitals. This project combines novel artificial intelligence (Al) algorithms, gaze monitoring software, and design principles to help doctors minimize diagnostic errors due to cognitive and perceptual biases. The project's success will fundamentally change how we design Al medical systems to increase diagnostic accuracy, save lives, reduce missed cancer diagnoses, improve public health, and advance NCl's mission.
最近的回顾性研究表明,放射学的诊断错误率并没有明显下降

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hien Van Nguyen其他文献

Virtual Relay Selection in LTE-V: A Deep Reinforcement Learning Approach to Heterogeneous Data
  • DOI:
    10.1109/access.2020.2997729
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Du, Xunsheng;Hien Van Nguyen;Han, Zhu
  • 通讯作者:
    Han, Zhu
Modulation of microenvironmental pH for dual release and reduced <em>in vivo</em> gastrointestinal bleeding of aceclofenac using hydroxypropyl methylcellulose-based bilayered matrix tablet
  • DOI:
    10.1016/j.ejps.2017.02.039
  • 发表时间:
    2017-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Won-Ho Kang;Hien Van Nguyen;Chulhun Park;Youn-Woong Choi;Beom-Jin Lee
  • 通讯作者:
    Beom-Jin Lee
A parallel descent algorithm for convex programming
  • DOI:
    10.1007/bf00429749
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Masao Fukushima;Mounir Haddou;Hien Van Nguyen;Jean-Jacques Strodiot;Takanobu Sugimoto;Eiki Yamakawa
  • 通讯作者:
    Eiki Yamakawa
Modeling radiologists’ cognitive processes using a digital gaze twin to enhance radiology training
  • DOI:
    10.1038/s41598-025-97935-y
  • 发表时间:
    2025-04-21
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Akash Awasthi;Anh Mai Vu;Ngan Le;Zhigang Deng;Supratik Maulik;Rishi Agrawal;Carol C. Wu;Hien Van Nguyen
  • 通讯作者:
    Hien Van Nguyen
Support Vector Shape: A Classifier-Based Shape Representation

Hien Van Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hien Van Nguyen', 18)}}的其他基金

SCH: AI-DOCTOR COLLABORATIVE MEDICAL DIAGNOSIS
SCH:AI-医生协同医疗诊断
  • 批准号:
    10592801
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 21.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了