Identifying Vulnerable Communities for Infectious Disease Outbreaks
确定传染病爆发的脆弱社区
基本信息
- 批准号:10687809
- 负责人:
- 金额:$ 5.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-09-19
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAffectAreaArtificial IntelligenceAttentionBlack AmericanBlack PopulationsBlack raceCOVID-19COVID-19 outbreakCOVID-19 pandemicCOVID-19 riskCOVID-19 susceptibilityCOVID-19 vaccinationCensusesCommunicable DiseasesCommunitiesCommunity HealthCountyDataData SetDeath RateDisadvantagedDiseaseDisease OutbreaksEducational StatusEpidemiologistEpidemiologyEssential workerEthnic OriginFutureGeographic DistributionGeographic Information SystemsGeographyGoalsHealthHealth ResourcesHeterogeneityHispanicHispanic AmericansHospitalizationHousingHuman PapillomavirusIncidenceIncomeIndigenousInequityInfectionInfluenzaLatinoLatino PopulationLinear RegressionsMachine LearningMapsMeasuresMethodsMinority GroupsModelingNative-BornNeighborhoodsOccupationalPatternPersonsPertussisPhiladelphiaPopulationPopulations at RiskPovertyPublic HealthRaceRecommendationRecording of previous eventsResearchResearch PersonnelResource AllocationRespiratory DiseaseRespiratory Tract InfectionsRiskRisk FactorsSARS-CoV-2 infectionTestingTimeTime trendTrainingTuberculosisUnited StatesVaccinationVaccinesValidationVulnerable Populationsage groupcaucasian Americancommunity transmissioncostdata registrydeprivationdisease transmissiondisorder riskdoctoral studenteconomic indicatoremergency preparednessethnic minority populationexperiencefuture outbreakhealth care availabilityhealth datahealth disparityhealth equityhospitalization ratesimprovedindexinginequitable distributioninnovationmachine learning algorithmmachine learning methodmachine learning modelneighborhood disadvantagenoveloutbreak concernoutbreak preparednesspeople of colorpredictive modelingpublic health interventionracial minority populationrespiratoryresponserisk predictionskillssocial determinantssocial health determinantssocial vulnerabilitysocioeconomic disadvantagesocioeconomicsstemtooltrendunderserved communityvulnerable community
项目摘要
PROJECT SUMMARY
The COVID-19 pandemic’s unequal toll on racial and ethnic minority groups in the United States underscored
that vulnerable communities need unique attention from public health officials to address health disparities
stemming from a cumulative history of injustices. Compared to white Americans, Black and Hispanic Americans
as well as indigenous populations have increased odds of hospitalization and higher deaths rates due to COVID-
19. A rapid, focused public health response is necessary for future outbreak preparedness, especially among
minority populations that are more vulnerable to disease. Artificial Intelligence (AI) has been used to predict
potential disease outbreaks; however, machine learning (ML), a branch of AI, has yet to be broadly used in
identifying vulnerable populations and underserved communities at risk for disease outbreaks and track
heterogeneities in risks at the neighborhood level. Furthermore, while disease incidence is often calculated at a
county or zip code level, understanding heterogeneities in risk among neighborhoods in community transmission
of diseases requires a more granular geographic unit for analysis. To this end, epidemiologic, geospatial, and
machine learning tools to rapidly and accurately identify vulnerable neighborhoods based on local needs will be
imperative to achieve health equity during infectious disease outbreaks. In Aim 1, we will explore associations
and trends between respiratory infectious disease incidence (ex. influenza, tuberculosis, pertussis, and COVID-
19), vaccination coverage (MMR, DTaP, HPV, and influenza), and socioeconomic disadvantage considering
geography in Philadelphia. Area Deprivation Index and Social Vulnerability Index will be used to measure
socioeconomic disadvantage. Poisson and linear regression models will be used to find associations between
infectious disease incidence, low vaccination coverage, and social determinants of health. Bayesian spatial
regression modeling will be used to assess the change in the proportion of vulnerable communities affected by
infectious diseases and identify any gaps in vaccination coverage differentially by neighborhood-level factors. In
Aim 2, we will train a geographic information system (GIS)-based ML model, fit to the aggregated geospatial
disease, vaccination, and social determinants of health data from Aim 1, and test its predictive capability on
Philadelphia COVID-19 case data. Our goal will be to assess the predictive capability of GIS-based ML models
on identifying areas for public health intervention. This innovative research will help us predict neighborhoods at
risk of future infectious disease outbreaks and aid in timely identification of vulnerable populations to guide public
health resources, which would be very useful for emergency preparedness efforts for future infectious disease
outbreaks. The accompanying training plan consists of both didactic and experiential learning opportunities, and
will enable the applicant to develop the skills and experience necessary to become an independent investigator
and applied epidemiologist in the field of infectious diseases.
项目摘要
COVID-19大流行对美国种族和少数民族群体造成的不平等影响凸显了
弱势社区需要公共卫生官员的独特关注来解决健康差距
是由累积的不公正历史造成的与白色美国人相比,黑人和西班牙裔美国人
以及原住民因COVID而住院的可能性增加,死亡率上升,
19.快速、集中的公共卫生应对措施对于未来的疫情准备是必要的,特别是在
更容易受到疾病影响的少数群体。人工智能(AI)已被用于预测
潜在的疾病爆发;然而,机器学习(ML),人工智能的一个分支,尚未被广泛用于
确定易受感染人群和服务不足社区面临疾病爆发风险,
社区层面的风险异质性。此外,虽然疾病发病率通常按
县或邮政编码级别,了解社区传播中邻里之间风险的异质性
需要一个更细粒度的地理单元进行分析。为此,流行病学、地理空间和
机器学习工具,根据当地需求快速准确地识别脆弱的社区,
在传染病爆发期间必须实现卫生公平。在目标1中,我们将探讨
以及呼吸道传染病发病率之间的趋势(例如,流感、肺结核、百日咳和COVID-
19),疫苗接种覆盖率(MMR,DTaP,HPV和流感),以及考虑到社会经济不利因素
费城的地理区域脆弱性指数和社会脆弱性指数将用于衡量
社会经济劣势。Poisson和线性回归模型将用于发现
传染病发病率、疫苗接种覆盖率低以及健康的社会决定因素。贝叶斯空间
回归模型将用于评估受影响的脆弱社区比例的变化,
传染病和查明疫苗接种覆盖率的差距,按社区一级的因素区分。在
目标2,我们将训练一个基于地理信息系统(GIS)的ML模型,适合聚合的地理空间
疾病,疫苗接种和来自目标1的健康数据的社会决定因素,并测试其预测能力,
费城COVID-19病例数据。我们的目标是评估基于GIS的ML模型的预测能力
确定公共卫生干预领域。这项创新的研究将帮助我们预测社区,
未来传染病爆发的风险,并帮助及时识别脆弱人群,以指导公众
卫生资源,这将对今后传染病的应急准备工作非常有用
爆发附带的培训计划包括教学和体验式学习机会,
将使申请人能够发展成为独立调查员所需的技能和经验
和传染病领域的应用流行病学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tuhina Srivastava其他文献
Tuhina Srivastava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tuhina Srivastava', 18)}}的其他基金
Identifying Vulnerable Communities for Infectious Disease Outbreaks
确定传染病爆发的脆弱社区
- 批准号:
10464066 - 财政年份:2022
- 资助金额:
$ 5.02万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 5.02万 - 项目类别:
Research Grant