Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
基本信息
- 批准号:10688000
- 负责人:
- 金额:$ 34.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute DiseaseAgingAlgorithmsBig DataCancer PatientCharacteristicsChronic DiseaseCommunitiesComplexComputer softwareDataData SetDevelopmentDiseaseEffectivenessEquilibriumExperimental DesignsGeneral PopulationGoalsHealthHematopoietic Stem Cell TransplantationHeterogeneityHuman bodyImmune responseInflammatory Bowel DiseasesInterventionLeadLearningLinkLongitudinal StudiesMalignant NeoplasmsMental DepressionMethodologyMethodsMicrobeModelingModernizationNon-Insulin-Dependent Diabetes MellitusObesityOutcomePatientsPhylogenetic AnalysisPlayProcessResearchRoleSamplingStatistical Data InterpretationStatistical ModelsStructureSurveysTestingTimeUrinary tract infectionVariantWomanbacterial communitydata sharingdesignflexibilityhigh dimensionalityhuman microbiotaimprovedmicrobialmicrobial communitymicrobiomemicrobiome analysismicrobiome compositionmicrobiome researchmicrobiome sequencingmicrobiotaopen sourcepersonalized interventionsoftware developmenttooluser-friendly
项目摘要
PROJECT ABSTRACT
The bacterial communities (microbiota) residing on the human body have been linked to a variety of acute and
chronic diseases and conditions, such as obesity, inflammatory bowel disorders, Type 2 diabetes, depression,
and urinary tract infections (UTIs), as well as to the host’s response to a variety of treatments and health
interventions for these diseases and conditions. As the critical role played by the microbiota has become
increasingly recognized, microbiome sequencing data sets are now routinely generated under ever more
sophisticated experimental designs and survey strategies. While such data share many common features and
challenges of modern big data, such as high-dimensionality and sparsity, they also possess characteristics
peculiar to the microbiota, including (i) the explicit and latent contextual relationships among the bacterial species,
such as their evolutionary and functional relationships; and (ii) the substantial heterogeneity across samples and
complex structure in the sample-to-sample variation. Effective analysis of modern microbiome studies calls for
new statistical methodology that incorporates these important characteristics in the data generative mechanism.
This project’s objective is to develop a suite of statistical models, methods, algorithms, and software that meet
this urgent need. An initial aim is to develop a multi-scale probabilistic framework for modeling microbiome
compositions that effectively characterizes the high dimensionality, sparsity, and substantial cross-sample
variation in microbiome sequencing data, and incorporates a variety of common experimental designs, such as
covariates, batch effects, and multiple time points, while striking a balance in flexibility, analytical parsimony, and
computational tractability. An additional focus is to develop latent variable models for microbiome compositional
data for the purpose of identifying latent structures such as sample clusters and species subcommunities. A final
aim is to produce user-friendly, open-source software that implements all of the proposed methods for the
analysis of microbiome sequencing data. All of the models and methods developed are informed by two on-
going collaborative projects of PI Ma and his team. One is on the identification of microbial communities
associated with UTIs in aging women, and the other on the study of longitudinal changes in the microbiome of
cancer patients undergoing hematopoietic stem cell transplantation. These studies will serve as testbeds for all
development. The models, methods, and software developed will not only result in better prediction of the health
outcomes in these and other microbiome studies but also help decipher the roles of microbiome in various
diseases and biomedical processes, with the ultimate goal of personalized interventions on the microbiome
compositions of patients to lead to improved health.
项目摘要
驻留在人体上的细菌群落(微生物区系)与各种急性和非典型肺炎有关
慢性疾病和状况,如肥胖、炎症性肠道疾病、2型糖尿病、抑郁症、
和尿路感染,以及宿主对各种治疗和健康的反应
针对这些疾病和状况的干预措施。随着微生物区系扮演的关键角色已经成为
越来越多的人认识到,微生物组测序数据集现在经常在越来越多的情况下生成
复杂的实验设计和调查策略。虽然这些数据具有许多共同特征,并且
现代大数据面临的挑战,如高维和稀疏,也具有特点
微生物区系所特有的,包括(I)细菌物种之间的显性和潜在的上下文关系,
例如它们的进化和功能关系;以及(Ii)样本和
样本之间的差异中的复杂结构。现代微生物组研究的有效分析需要
将这些重要特征纳入数据生成机制的新统计方法。
该项目的目标是开发一套符合以下条件的统计模型、方法、算法和软件
这种迫切的需要。最初的目标是开发用于模拟微生物组的多尺度概率框架
有效表征高维性、稀疏性和大量交叉样本的成分
微生物组测序数据的变异,并结合了各种常见的实验设计,例如
协变量、批处理效应和多个时间点,同时在灵活性、分析简洁性和
计算可操纵性。另一个重点是开发微生物组组成的潜变量模型。
数据,以确定潜在结构,如样本群和物种亚群落。决赛
目标是生产用户友好的开放源码软件,实现所有建议的方法
微生物组测序数据分析。所有开发的模型和方法都由两个On-On-On提供信息-
正在进行皮马和他的团队的合作项目。一个是关于微生物群落的鉴定
与老年妇女尿路感染有关,另一篇是关于老年人微生物群纵向变化的研究
接受造血干细胞移植的癌症患者。这些研究将作为所有人的试验床
发展。开发的模型、方法和软件不仅将导致对健康的更好预测
这些和其他微生物组研究的结果也有助于破译微生物组在各种不同的
疾病和生物医学过程,最终目标是对微生物组进行个性化干预
患者的成分有助于改善健康状况。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlling taxa abundance improves metatranscriptomics differential analysis.
- DOI:10.1186/s12866-023-02799-9
- 发表时间:2023-03-07
- 期刊:
- 影响因子:4.2
- 作者:Ji, Zhicheng;Ma, Li
- 通讯作者:Ma, Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Ma其他文献
Effect of capital constraints on the risk preference behavior of commercial banks
资本约束对商业银行风险偏好行为的影响
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:8.2
- 作者:
Li Ma;Junxun Dai;Xian Huang - 通讯作者:
Xian Huang
Li Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Ma', 18)}}的其他基金
Targeting the LIFR-LCN2 pathway to improve liver cancer therapy
靶向 LIFR-LCN2 通路改善肝癌治疗
- 批准号:
10583188 - 财政年份:2023
- 资助金额:
$ 34.57万 - 项目类别:
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10263932 - 财政年份:2020
- 资助金额:
$ 34.57万 - 项目类别:
Statistical modeling of cross-sample variation and learning of latent structures in microbiome sequencing data
跨样本变异的统计建模和微生物组测序数据中潜在结构的学习
- 批准号:
10468838 - 财政年份:2020
- 资助金额:
$ 34.57万 - 项目类别:
Epithelial-mesenchymal transition regulators in radioresistance and DNA repair
放射抗性和 DNA 修复中的上皮-间质转化调节因子
- 批准号:
9095257 - 财政年份:2014
- 资助金额:
$ 34.57万 - 项目类别:
Epithelial-mesenchymal transition regulators in radioresistance and DNA repair
放射抗性和 DNA 修复中的上皮-间质转化调节因子
- 批准号:
8751065 - 财政年份:2014
- 资助金额:
$ 34.57万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8511590 - 财政年份:2012
- 资助金额:
$ 34.57万 - 项目类别:
Non-coding RNA functions in tumor metastasis
非编码RNA在肿瘤转移中的作用
- 批准号:
10311482 - 财政年份:2012
- 资助金额:
$ 34.57万 - 项目类别:
Non-coding RNA functions in tumor metastasis
非编码RNA在肿瘤转移中的作用
- 批准号:
10531262 - 财政年份:2012
- 资助金额:
$ 34.57万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8676742 - 财政年份:2012
- 资助金额:
$ 34.57万 - 项目类别:
Regulation of metastasis and epithelial-mesenchymal transition by microRNAs
microRNA对转移和上皮间质转化的调节
- 批准号:
8851531 - 财政年份:2012
- 资助金额:
$ 34.57万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 34.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)