Risk-Based Primary Prevention of Heart Failure
基于风险的心力衰竭一级预防
基本信息
- 批准号:10689211
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdrenergic beta-AntagonistsAdultAgeAgonistAlgorithmsAmericanAmerican Heart AssociationAngiotensin-Converting Enzyme InhibitorsAreaAtherosclerosisBiological MarkersBlack raceBlood PressureCardiologyCardiovascular systemCause of DeathChronic Kidney FailureClinicalCoronary heart diseaseDataDevelopmentDiabetes MellitusDiseaseDisparityDissemination and ImplementationEFRACEchocardiographyEffectivenessElectronic Health RecordEquationEquityEthnic OriginFundingFutureGLP-I receptorGeographyGlucoseGoalsGuide preventionGuidelinesHealth systemHeart failureHospitalizationHypertensionIndividualIntegrated Health Care SystemsInterventionMachine LearningMedicalMedicineMethodologyMethodsMissionModelingMorbidity - disease rateNational Heart, Lung, and Blood InstituteNeighborhoodsNot Hispanic or LatinoOutcome StudyParticipantPatientsPharmaceutical PreparationsPhenotypePractice GuidelinesPrevalencePreventionPrevention strategyPreventivePreventive therapyPrimary PreventionPrognosisPublic HealthRaceRecommendationResearchRiskRisk EstimateRisk FactorsRisk ReductionSamplingScienceSocietiesSodiumStatistical ModelsStrategic visionSymptomsTechniquesTestingTimeTreatment FailureUnited StatesWorkblood glucose regulationclinical decision supportclinical developmentclinical practiceclinical riskclinical trial recruitmentcohortcollegecomorbiditycomparative effectivenesscomparative safetydata harmonizationdesigneffectiveness evaluationenhancing factorfuture implementationhigh riskhigh risk populationhospital readmissionimprovedimproved outcomeindividualized preventioninhibitorinnovationmachine learning methodmortalitymultidimensional datanovelnovel therapeuticspopulation basedpreservationpreventpreventive interventionprospectiverisk predictionrisk prediction modelscreeningsexsocial determinantssocial health determinantssocioeconomicssupport toolssymportertool
项目摘要
ABSTRACT
Despite declines in total cardiovascular mortality rates in the United States, heart failure (HF) mortality rates,
as well as hospitalizations and readmissions, are increasing with the greatest increases in mortality rates
observed among non-Hispanic Black adults under the age of 65 years. Identification of individuals at risk of HF
and specific HF subtypes (HFrEF and HFpEF) within diverse samples is critical to inform much-needed
strategies to reduce the burden of HF. Although guideline-directed medical therapies are increasingly available
for HF with reduced ejection fraction (HFrEF), prognosis remains dismal with 50% survival at 5 years. Further,
few effective disease-modifying therapies currently exist for patients with HF with preserved ejection fraction
(HFpEF), which is the most common HF subtype. The significant and growing burden of heart failure highlights
the need for preventive interventions prior to the development of clinical symptoms. As a result, risk
prediction to target prevention of HF, particularly for HFpEF, is a critical next step to improve
outcomes. Whereas risk-based prevention (matching the intensity of prevention with the absolute risk of the
individual) is widely accepted in the primary prevention of atherosclerotic cardiovascular disease, no such
prevention paradigm currently exists for HF, in part, due to the lack of a well-established and generalizable risk
model. To address multi-society practice guideline recommendations, our group recently developed and
validated the Pooled Cohort Equations to Prevent Heart Failure (PCP-HF) using classic statistical modeling
techniques in a population-based cohort sample. The current proposal builds upon our prior work and expands
it to leverage novel machine learning methods to efficiently integrate large, multidimensional data across
multiple domains and from two integrated health systems (Northwestern Medicine and Kaiser Permanente).
This will allow us to create a geographically, racially/ethnically, and socioeconomically diverse real-world
cohort of approximately 800,000 individuals to inform effective and equitable risk-based prevention
strategies focused on HF. We will analyze individual-level data from the two health systems (e.g., clinical risk
factor levels, comorbidities, medication use, social determinants of health) alongside innovative statistical
techniques (e.g., machine learning) to develop optimal risk prediction models. The aims of the current proposal
are: (1) develop and validate sex-specific risk prediction models for incident HF and HF subtype (HFrEF and
HFpEF) and (2) define the comparative effectiveness of preventive HF therapies (e.g., angiotensin converting
enzyme inhibitors, sodium glucose co-transporter 2 inhibitors) stratified by predicted HF risk. This project will
lay the groundwork for future dissemination and implementation of clinical decision support tools to personalize
HF prevention strategies. Completion of these aims will directly address a scientific focus area outlined in the
2019 NHLBI/Division of Cardiovascular Sciences Strategic Vision Implementation Plan with the potential to
have significant impact on “reducing burden related to HF”.
摘要
尽管美国的心血管总死亡率下降,但心力衰竭(HF)死亡率,
以及住院和再入院,随着死亡率的增加而增加
在65岁以下的非西班牙裔黑人成年人中观察到。识别HF风险个体
不同样本中的特定HF亚型(HFrEF和HFpEF)对于提供急需的信息至关重要。
减轻HF负担的策略。尽管指南指导的医学治疗越来越多
对于射血分数降低的HF(HFrEF),5年生存率为50%,预后仍然很差。此外,本发明还
对于射血分数保留的HF患者,目前存在几种有效的疾病改善疗法
(HFpEF),这是最常见的HF亚型。心力衰竭的重大和日益增长的负担强调了
在出现临床症状之前进行预防性干预的必要性。因此,风险
预测HF的靶向预防,特别是HFpEF,是改善的关键下一步
结果。而基于风险的预防(将预防的强度与
个体)在动脉粥样硬化性心血管疾病的一级预防中被广泛接受,但没有这样的
目前存在HF的预防模式,部分原因是缺乏明确的和可推广的风险
模型为了解决多社会实践指南的建议,我们的小组最近制定和
使用经典统计模型验证了预防心力衰竭的合并队列方程(PCP-HF)
技术在一个基于人口的队列样本。目前的建议建立在我们以前的工作基础上,
它利用新的机器学习方法,有效地整合大型多维数据,
多个领域和两个综合卫生系统(西北医学和凯撒永久)。
这将使我们能够创建一个地理上、种族/民族上和社会经济上多样化的现实世界
约80万人组成的队列,为有效和公平的基于风险的预防提供信息
战略重点是HF。我们将分析来自两个卫生系统的个人层面数据(例如,临床风险
因素水平、合并症、药物使用、健康的社会决定因素),
技术(例如,机器学习)来开发最佳风险预测模型。本提案的目的
(1)开发和验证HF事件和HF亚型(HFrEF和
HFpEF)和(2)定义了预防性HF治疗的比较有效性(例如,血管紧张素转换
酶抑制剂、钠葡萄糖协同转运蛋白2抑制剂)。该项目将
为未来临床决策支持工具的传播和实施奠定基础,
HF预防策略。这些目标的完成将直接涉及《2010年科学和技术展望》中概述的一个科学重点领域。
2019年NHLBI/心血管科学部战略愿景实施计划,有可能
对“减轻HF相关负担”有显著影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sadiya Sana Khan其他文献
DEVELOPMENT AND VALIDATION OF LONG-TERM RISK MODELS FOR PREDICTION OF ATHEROSCLEROTIC CARDIOVASCULAR DISEASE (ASCVD): THE CARDIOVASCULAR LIFETIME RISK POOLING PROJECT (LRPP)
- DOI:
10.1016/s0735-1097(24)03662-3 - 发表时间:
2024-04-02 - 期刊:
- 影响因子:
- 作者:
James W. Guo;Hongyan Ning;Sadiya Sana Khan;John Wilkins;Donald M. Lloyd-Jones - 通讯作者:
Donald M. Lloyd-Jones
THE AMERICAN HEART ASSOCATION PREDICTING CARDIOVASCULAR DISEASE EVENT (PREVENT) EQUATIONS IN CHRONIC KIDNEY DISEASE
美国心脏协会慢性肾脏病心血管疾病事件预测方程(PREVENT)
- DOI:
10.1016/s0735-1097(25)00887-3 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Nikitha Murthy;Alyssa Sanchez;Kevin Bryan Lo;Abiodun Benjamin Idowu;Katherine R. Tuttle;Janani Rangaswami;Sadiya Sana Khan;Roy Mathew - 通讯作者:
Roy Mathew
NURSE PRACTITIONER-LED, TEAM-BASED CARDIOVASCULAR-KIDNEY-METABOLIC CLINIC IMPROVES OUTCOMES: INITIAL EXPERIENCE IN AN AMBULATORY PRACTICE
以护士从业者为主导、基于团队的心血管-肾脏-代谢门诊改善结局:门诊实践中的初步经验
- DOI:
10.1016/s0735-1097(25)02996-1 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Julie Vanourek;Jaime Hosler;Bridget Dolan Teschke;Aryelle Schicht;Kaleigh Powers;Andrew Kimmel;Brie Jeffries;Kim Mallon;John Mulrooney;Sarah M. Plaskett;Sadiya Sana Khan;Jane E. Wilcox;Matthew J. Feinstein;Mohamed Al-Kazaz;John Wilkins;Richard L. Weinberg;Neil J. Stone;Anthony Pick;Raja Kannan Mutharasan - 通讯作者:
Raja Kannan Mutharasan
CONTRIBUTIONS OF SOCIAL DETERMINANTS OF HEALTH TO RACIAL AND ETHNIC DIFFERENCES IN AGE OF ONSET OF HEART FAILURE
健康的社会决定因素对心力衰竭发病年龄方面种族和族裔差异的影响
- DOI:
10.1016/s0735-1097(25)05179-4 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Xiaoning Huang;Lucia Petito;Gregg C. Fonarow;Faraz S. Ahmad;Nilay S. Shah;Sarah Chuzi;Kiarri Kershaw;Philip Greenland;Sadiya Sana Khan - 通讯作者:
Sadiya Sana Khan
INCREMENTAL UTILITY OF LIPOPROTEIN(A) AND C-REACTIVE PROTEIN ON PREDICTION OF TOTAL CARDIOVASCULAR DISEASE USING THE PREVENT EQUATIONS: THE CORONARY ARTERY RISK DEVELOPMENT IN YOUNG ADULTS (CARDIA) STUDY
脂蛋白(A)和 C 反应蛋白对使用预防方程预测心血管疾病总体的增量效用:年轻成年人冠状动脉风险发展(CARDIA)研究
- DOI:
10.1016/s0735-1097(25)00882-4 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
John Ostrominski;Jane Y. Liu;Erin R. Wong;Andrew P. Ambrosy;Deepak K. Gupta;Sadiya Sana Khan;Alexander Blood;Nilay S. Shah;Donald M. Lloyd-Jones;Ankeet Bhatt - 通讯作者:
Ankeet Bhatt
Sadiya Sana Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sadiya Sana Khan', 18)}}的其他基金
CHIcago Center for Accelerating nextGen Omics, deep phenotyping, and data science in Heart Failure (CHICAGO-HF)
芝加哥加速心力衰竭下一代组学、深度表型分析和数据科学中心 (CHICAGO-HF)
- 批准号:
10483161 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
CHIcago Center for Accelerating nextGen Omics, deep phenotyping, and data science in Heart Failure (CHICAGO-HF)
芝加哥加速心力衰竭下一代组学、深度表型分析和数据科学中心 (CHICAGO-HF)
- 批准号:
10327554 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
PRegnancy OuTcomEs and subclinical Cardiovascular disease sTudy: (PROTECT)
妊娠结局和亚临床心血管疾病研究:(保护)
- 批准号:
10534752 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
PRegnancy OuTcomEs and subclinical Cardiovascular disease sTudy: (PROTECT)
妊娠结局和亚临床心血管疾病研究:(保护)
- 批准号:
10345228 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
CHIcago Center for Accelerating nextGen Omics, deep phenotyping, and data science in Heart Failure (CHICAGO-HF)
芝加哥加速心力衰竭下一代组学、深度表型分析和数据科学中心 (CHICAGO-HF)
- 批准号:
10679082 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Patterns of Cardiopulmonary health across the life course
整个生命过程中心肺健康的模式
- 批准号:
10459504 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Patterns of Cardiopulmonary health across the life course
整个生命过程中心肺健康的模式
- 批准号:
10634635 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Patterns of Cardiopulmonary health across the life course
整个生命过程中心肺健康的模式
- 批准号:
10280550 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
The Role of Plasminogen Activator Inhibitor-1 in the Development and Progression of Obesity
纤溶酶原激活剂抑制剂-1 在肥胖发生和进展中的作用
- 批准号:
8984104 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别: