Ionization Detail - Biologically based treatment planning for particle therapy beyond LET-RBE
电离细节 - LET-RBE 之外的基于生物学的粒子治疗治疗计划
基本信息
- 批准号:10689288
- 负责人:
- 金额:$ 58.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAerobicAlgorithmsAnatomyAnimalsArtificial IntelligenceBiologicalBiological ModelsBiometryCancer PatientCancerousCarbonCell LineCellsChargeChordomaClinicalClinical DataCollaborationsCommunitiesComplicationComputational TechniqueComputing MethodologiesConsensusCustomDataData SetDevelopmentDiseaseDoseEffectivenessEuropeanEvaluationEventGoalsHeadHigh-LET RadiationHumanHuman Cell LineHypoxiaImplementation readinessIn VitroIonsJapaneseKnowledgeLinear Energy TransferMachine LearningMammalian CellMeasurementMeasuresMedicalMethodsModelingModernizationMolecularMonte Carlo MethodMusNormal tissue morphologyOrganPatientsPatternPelvisPerformancePhotonsPhysicsProbabilityProceduresProstateProtonsRadiation OncologyRadiation therapyRadiobiologyRadiology SpecialtyRelative Biological EffectivenessResearchResearch DesignRodentRoentgen RaysScanningScienceStructureTechniquesTechnologyTestingTherapy trialTissuesValidationabsorptioncancer cellclinical applicationclinical efficacyclinical implementationclinical practicecomputer sciencedesigndosimetryflasksimprovedin vivoinnovationionizationirradiationmathematical algorithmmathematical sciencesmembernanoscalenoveloptimal treatmentsparticleparticle beamparticle therapypredictive modelingprospectiveprostate cancer cellradiation responseresponseside effectsimulationtreatment planningtumortumor xenograft
项目摘要
Project Summary
Current proton and ion therapy treatment planning procedures utilize either the physical quantity linear
energy transfer (LET) as a surrogate for biological effectiveness or make use of relative biological
effectiveness (RBE) models that convert absorbed dose to biologically weighted dose, assumed to be iso-
effective to photons. LET is indeed important clinically for planning treatments with charged particles, but
there are known problems. Ion beams with the same LET can have different RBE, depending on particle type
and energy. Therefore, LET by itself is not an ideal parameter to use in radiation treatment planning (RTP).
For clinical application of carbon therapy, RBE-models have been developed. However, comparisons of
different RBE models used for carbon therapy have shown that dose prescriptions implemented with the
European local effect model or the Japanese National Institute of Radiological Sciences mixed beam model
can be up to 15% different. We use the term ionization detail (ID) to mean the detailed distribution of
ionizing events along a particle track on the nanometer scale. Our chief hypothesis, which is
supported by strong prior evidence, is that ID can predict, better than LET and existing RBE
models, the biological effects associated with high-LET radiation. We have previously shown how
ID can be used together with these models to improve their performance, providing a path for integrating
ID-based RTP into clinical practice. Our approach could lead to a consensus in proton and ion therapy RTP.
With four Specific Aims, we have chosen a translational and stepwise approach to build an ID-based
prediction model. We will test this model for different endpoints and model systems ranging from in vitro
cell and molecular data, obtained by irradiating human cancer cells in flasks and anatomical phantoms, to
in vivo mice/human tumor data. We will develop advanced algorithms and computational GPU-
based methods and use them for effective inverse treatment planning with actively scanned proton and ion
beams. This technology will be applied to demonstrate the practicality and evaluate the clinical efficacy of our
approach in prostate and chordoma treatments, first prospectively in human-size pelvis and head phantoms,
and finally, retrospectively in patients treated for these diseases. We have assembled a strong team with the
complementary expertise needed for this project. Members of our team have all successfully
collaborated together. Upon completion, we will provide a rigorously tested and validated approach to
ID-based particle RTP that will be available for cross-correlation with existing clinical data and for
careful testing in prospective clinical particle therapy trials.
项目概要
当前的质子和离子治疗治疗计划程序利用物理量线性
能量转移(LET)作为生物有效性的替代品或利用相关的生物效应
有效性(RBE)模型,将吸收剂量转换为生物加权剂量,假设是iso-
对光子有效。 LET 在临床上对于规划带电粒子治疗确实很重要,但是
存在已知问题。具有相同 LET 的离子束可以具有不同的 RBE,具体取决于粒子类型
和能量。因此,LET 本身并不是放射治疗计划 (RTP) 中使用的理想参数。
为了碳疗法的临床应用,已经开发了 RBE 模型。然而,比较
用于碳疗法的不同 RBE 模型表明,采用
欧洲局部效应模型或日本国立放射线科学研究所混合光束模型
差异最多可达 15%。我们使用术语“电离细节”(ID) 来表示
沿纳米尺度粒子轨迹的电离事件。我们的主要假设是
有强有力的先验证据支持,ID 可以预测,比 LET 和现有的 RBE 更好
模型,与高 LET 辐射相关的生物效应。我们之前已经展示过如何
ID可以与这些模型一起使用来提高它们的性能,提供集成的途径
基于 ID 的 RTP 进入临床实践。我们的方法可能会在质子和离子治疗 RTP 方面达成共识。
出于四个具体目标,我们选择了一种平移和逐步的方法来构建基于 ID 的
预测模型。我们将针对不同的终点和模型系统测试该模型,范围从体外
通过照射烧瓶和解剖模型中的人类癌细胞获得的细胞和分子数据
体内小鼠/人类肿瘤数据。我们将开发先进的算法和计算GPU-
基于方法,并使用它们通过主动扫描质子和离子进行有效的逆向治疗计划
横梁。该技术将用于展示实用性并评估我们的临床疗效
前列腺和脊索瘤治疗方法,首先前瞻性地用于人体大小的骨盆和头部模型,
最后,对接受这些疾病治疗的患者进行回顾性研究。我们组建了一支强大的团队
该项目所需的补充专业知识。我们团队的成员都已经成功
一起合作。完成后,我们将提供经过严格测试和验证的方法
基于 ID 的粒子 RTP 将可用于与现有临床数据的交叉关联以及
在前瞻性临床粒子治疗试验中进行仔细测试。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superiorization of projection algorithms for linearly constrained inverse radiotherapy treatment planning.
- DOI:10.3389/fonc.2023.1238824
- 发表时间:2023
- 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy.
电离细节参数和簇剂量:用于选择纳米剂量量的数学模型,用于带电粒子放射治疗的治疗计划。
- DOI:10.1088/1361-6560/acea16
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Faddegon,Bruce;Blakely,EleanorA;Burigo,Lucas;Censor,Yair;Dokic,Ivana;DomínguezKondo,Naoki;Ortiz,Ramon;RamosMéndez,José;Rucinski,Antoni;Schubert,Keith;Wahl,Niklas;Schulte,Reinhard
- 通讯作者:Schulte,Reinhard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE FADDEGON其他文献
BRUCE FADDEGON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE FADDEGON', 18)}}的其他基金
The TOPAS Tool for Particle Simulation, a Monte Carlo Simulation Tool for Physics, Biology and Clinical Research
用于粒子模拟的 TOPAS 工具,一种用于物理、生物学和临床研究的蒙特卡罗模拟工具
- 批准号:
10415892 - 财政年份:2018
- 资助金额:
$ 58.17万 - 项目类别:
PRISM: Precision Radiotherapy and Imaging of Small Mammals
PRISM:小型哺乳动物的精密放射治疗和成像
- 批准号:
9274804 - 财政年份:2017
- 资助金额:
$ 58.17万 - 项目类别:
Development of Innovative Radiobiological Models and Treatment Planning Tools for Proton and Ion Therapy.
质子和离子治疗的创新放射生物学模型和治疗计划工具的开发。
- 批准号:
8812747 - 财政年份:2015
- 资助金额:
$ 58.17万 - 项目类别:
Accurate, easy-to-commission radiotherapy beam models
准确、易于调试的放射治疗射束模型
- 批准号:
7256899 - 财政年份:2005
- 资助金额:
$ 58.17万 - 项目类别:
Accurate, easy-to-commission radiotherapy beam models
准确、易于调试的放射治疗射束模型
- 批准号:
6966302 - 财政年份:2005
- 资助金额:
$ 58.17万 - 项目类别:
Accurate, easy-to-commission radiotherapy beam models
准确、易于调试的放射治疗射束模型
- 批准号:
7078545 - 财政年份:2005
- 资助金额:
$ 58.17万 - 项目类别:
Accurate, easy-to-commission radiotherapy beam models
准确、易于调试的放射治疗射束模型
- 批准号:
7429766 - 财政年份:2005
- 资助金额:
$ 58.17万 - 项目类别:
Development of Innovative Radiobiological Models and Treatment Planning Tools for Proton and Ion Therapy.
质子和离子治疗的创新放射生物学模型和治疗计划工具的开发。
- 批准号:
9150793 - 财政年份:
- 资助金额:
$ 58.17万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Research Grant














{{item.name}}会员




