Reconstruction-free three dimensional positron emission imaging

免重建三维正电子发射成像

基本信息

  • 批准号:
    10689205
  • 负责人:
  • 金额:
    $ 61.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract A major advantage of coincidence detection of annihilation photons from positron-emitting radiotracers is the availability of time-of-flight (TOF) information, and the ability to measure TOF differences to better localize the positron emitter. Normally for positron emission tomography (PET), TOF information is used as a weighting kernel during image reconstruction and results in an effective sensitivity gain that can be used to reduce radiation dose, improve signal-to-noise ratio, or reduce scan duration. The magnitude of these benefits depend on the TOF resolution, which is governed by the timing performance of the detectors. Current state of the art for PET scanners is ~220 ps which corresponds to a localization of ~3.3 cm. A transformational change would occur, however, if a TOF resolution of <30 ps could be achieved. This would localize events within 4.5 mm, allowing images to be directly generated without a reconstruction algorithm at a spatial resolution that matches what is achieved in clinical PET scanners today. We refer to this as direct positron emission imaging (PEI). With this superb TOF resolution and reconstruction-free imaging, we enter a new regime where we expect major increases in image signal-to-noise, both due to the additional TOF information, and the removal of noise amplification inherent in reconstructing noisy data with noisy corrections from projection data. We propose to develop a first proof-of-concept imaging system that uses ultra-fast detectors to directly produces cross-sectional images without reconstruction and to quantify the performance of PEI both through simulations and experimentally. Since direct PEI does not have the same sampling constraints for data collection as PET, it creates opportunities for portable, and flexible imaging devices, with implications for patient-tailored or task-specific imaging applications (i.e. cardiac or breast imaging), as well as open designs for general purpose applications. To achieve the unprecedented TOF capabilities needed for direct PEI, we will exploit promptly emitted Cerenkov radiation that is generated with <10 ps in certain materials, including scintillators, in response to a 511 keV photon interaction. Our proposed novel detector design integrates a Cerenkov radiator directly into the entrance window of an ultra-fast microchannel plate photomultiplier tube, which is the fastest photon detector currently available with a response time of 25 ps. This approach eliminates all optical reflections between the point of light generation and the photocathode, preserving the prompt timing nature of Cerenkov photons. We then combine the integrated Cerenkov radiator detector with auxiliary photodetector read-out for robust coincidence detection, and complement this with advanced signal processing algorithms we have pioneered using convolutional neural networks to extract all possible timing information from the digitized detector waveforms and ultimately to perform reconstruction-free imaging using only the digitized waveforms as input. In summary, we aim to prove that direct PEI is possible, to characterize its properties and to provide the technological and algorithmic foundations for eventual translation for human imaging.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun Il Kwon其他文献

The oil production performance analysis using discrete fracture network model with simulated annealing inverse method
  • DOI:
    10.1007/s12303-013-0034-y
  • 发表时间:
    2013-07-05
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Young Ho Jang;Tae Hun Lee;Ji Hun Jung;Sun Il Kwon;Won Mo Sung
  • 通讯作者:
    Won Mo Sung

Sun Il Kwon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sun Il Kwon', 18)}}的其他基金

Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
  • 批准号:
    10766104
  • 财政年份:
    2023
  • 资助金额:
    $ 61.64万
  • 项目类别:
Reconstruction-free three dimensional positron emission imaging
免重建三维正电子发射成像
  • 批准号:
    10504837
  • 财政年份:
    2022
  • 资助金额:
    $ 61.64万
  • 项目类别:
High-performance and cost-effective detector modules based on ultra-dense and fast ceramic scintillator for long axial field-of-view positron emission tomography
基于超密快速陶瓷闪烁体的高性能且经济高效的探测器模块,用于长轴视场正电子发射断层扫描
  • 批准号:
    10299559
  • 财政年份:
    2021
  • 资助金额:
    $ 61.64万
  • 项目类别:
High-performance and cost-effective detector modules based on ultra-dense and fast ceramic scintillator for long axial field-of-view positron emission tomography
基于超密快速陶瓷闪烁体的高性能且经济高效的探测器模块,用于长轴视场正电子发射断层扫描
  • 批准号:
    10474466
  • 财政年份:
    2021
  • 资助金额:
    $ 61.64万
  • 项目类别:
High-performance and cost-effective detector modules based on ultra-dense and fast ceramic scintillator for long axial field-of-view positron emission tomography
基于超密快速陶瓷闪烁体的高性能且经济高效的探测器模块,用于长轴视场正电子发射断层扫描
  • 批准号:
    10689100
  • 财政年份:
    2021
  • 资助金额:
    $ 61.64万
  • 项目类别:
Time-of-flight positron emission tomography using Cerenkov luminescence in bismuth germanate
使用锗酸铋中的切伦科夫发光进行飞行时间正电子发射断层扫描
  • 批准号:
    10376047
  • 财政年份:
    2020
  • 资助金额:
    $ 61.64万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 61.64万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了