A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
基本信息
- 批准号:10689651
- 负责人:
- 金额:$ 38.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAlzheimer&aposs DiseaseAmygdaloid structureArchitectureArtificial IntelligenceBehaviorBehavioralBiological MarkersBiosensorClinicalCollaborationsCommunitiesComputational algorithmComputer ArchitecturesComputer HardwareComputer softwareCustomDataDementiaDependenceDevicesDiseaseEcosystemEnvironmentGenerationsGoalsHippocampusHumanImplantInfrastructureIntelligenceIntelligence TestsLearningLibrariesLifeLinkMachine LearningMapsMeasurementMeasuresMemoryMemory DisordersMemory impairmentModelingNervous SystemNeurosciencesPatientsPerformancePhysiologicalPhysiological ProcessesPoliciesPower SourcesPrecision therapeuticsPsychological reinforcementRattusResearchRewardsSymptomsSystemTechniquesTechnologyTestingTherapeuticTimeTranslatingTranslationsWorkage relatedbehavioral outcomebiological systemsdesignimplantable deviceimprovedin vivoin vivo evaluationneuralneurophysiologyneuropsychiatric disorderneuroregulationnext generationnovel strategiesopen sourcepredictive modelingprototypeside effecttherapy outcometoolwearable device
项目摘要
Despite advances in neuromodulation technology, therapeutic devices are often ineffective or have adverse
side effects. Next-generation closed-loop neuromodulation systems will provide great potentials for
improving the therapeutic outcome by sensing the neural states and adapting the neuromodulatory actions.
These systems will provide powerful tools for understanding the mechanisms of treatment by elucidating the
causal link between regulating the physiological states and the therapeutic or the behavioral outcomes.
However, a lack of systematic approach to optimally control neurostimulation is a major barrier to fully utilize
their potentials. Furthermore, the real-time implementation of advanced optimization and control algorithms
requires powerful computing hardware that pose a major challenge for translating the effective neural
interface systems into implantable or wearable devices with limited power supply.
The proposed project is addressing these two problems by developing an open-source end-to-end platform,
called NeuroWeaver, to design, test and deploy intelligent Closed-Loop Neuromodulation (iCLON) systems
that automatically can learn the optimal neuromodulation control policies by interacting with the nervous
system. We cast the problem of optimizing neuromodulation into reward-based learning where achieving
the desired neural state or the therapeutic outcome represents a measure of reward for the iCLON system.
We will use techniques from reinforcement learning and model predictive control to develop algorithms that
enable iCLON systems learn the optimal actions to maximize their reward.
Memory dysfunction is one of the most devastating symptoms of Alzheimer’s disease and age-related
dementia. We will develop the NeuroWeaver platform in the context of designing iCLON systems to induce
good memory states in the hippocampus by closed-loop amygdala stimulation. Optimizing the memory-
enhancing effects of amygdala stimulation will have immediate benefits to research on treatments for
memory disorders. More broadly, the NeuroWeaver platform can be combined with a wide range of
biological sensors and actuators to design intelligent closed-loop control systems for regulating
physiological processes far beyond the proposed application in this proposal. Our proposed platform will
have the potential to create an open-source ecosystem for collaboration between machine learning,
neuroscience, and computer architecture communities as well as provide tools for further enrichment of the
algorithms and broader utilization in the biomedical domain.
尽管神经调节技术取得了进步,但治疗装置通常是无效的或具有不利的效果。
副作用.下一代闭环神经调节系统将为
通过感测神经状态和调整神经调节作用来改善治疗结果。
这些系统将提供强大的工具,通过阐明治疗机制,
调节生理状态和治疗或行为结果之间的因果关系。
然而,缺乏最佳控制神经刺激的系统方法是充分利用的主要障碍
他们的潜力。此外,先进的优化和控制算法的实时实施
需要强大的计算硬件,这对翻译有效的神经网络构成了重大挑战。
将系统接口到具有有限电源的可植入或可穿戴设备中。
拟议的项目通过开发一个开源端到端平台来解决这两个问题,
名为NeuroWeaver,设计,测试和部署智能闭环神经调节(iCLON)系统
它可以通过与神经系统的交互来自动学习最佳的神经调节控制策略,
系统我们将优化神经调节的问题转化为基于奖励的学习,
所需的神经状态或治疗结果代表iCLON系统的奖励的量度。
我们将使用强化学习和模型预测控制技术来开发算法,
使iCLON系统能够学习最佳行动以最大化其回报。
记忆功能障碍是阿尔茨海默病最具破坏性的症状之一,与年龄相关
痴呆我们将在设计iCLON系统的背景下开发NeuroWeaver平台,
通过闭环杏仁核刺激在海马体中形成良好的记忆状态。优化内存-
增强杏仁核刺激的效果将对研究治疗
记忆障碍更广泛地说,NeuroWeaver平台可以与各种各样的
生物传感器和执行器设计智能闭环控制系统,
生理过程远远超出了本提案中提出的应用。我们提出的平台将
有潜力为机器学习之间的协作创建一个开源生态系统,
神经科学和计算机架构社区,并提供工具,进一步丰富
算法和更广泛的利用在生物医学领域。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amygdala Stimulation Leads to Functional Network Connectivity State Transitions in the Hippocampus.
- DOI:10.1109/embc44109.2020.9176742
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Sendi MSE;Kanta V;Inman CS;Manns JR;Hamann S;Gross RE;Willie JT;Mahmoudi B
- 通讯作者:Mahmoudi B
ReLeQ : A Reinforcement Learning Approach for Automatic Deep Quantization of Neural Networks.
- DOI:10.1109/mm.2020.3009475
- 发表时间:2020-09
- 期刊:
- 影响因子:3.6
- 作者:Elthakeb AT;Pilligundla P;Mireshghallah F;Esmaeilzadeh H;Yazdanbakhsh A
- 通讯作者:Yazdanbakhsh A
Software-Defined Workflows for Distributed Interoperable Closed-Loop Neuromodulation Control Systems.
- DOI:10.1109/access.2021.3113892
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kathiravelu P;Sarikhani P;Gu P;Mahmoudi B
- 通讯作者:Mahmoudi B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Esmaeilzadeh其他文献
Hadi Esmaeilzadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Esmaeilzadeh', 18)}}的其他基金
A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
- 批准号:
10005329 - 财政年份:2019
- 资助金额:
$ 38.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.83万 - 项目类别:
Research Grant