Grounding models of category learning in the visual experiences of young children

幼儿视觉体验中类别学习的基础模型

基本信息

  • 批准号:
    10704062
  • 负责人:
  • 金额:
    $ 10.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-16 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Early word learning is a major developmental achievement that rests on a foundation of visual category learning: to learn that the word “dog” refers to a category dog that includes chihuahuas and excludes wolves, children must make an impressive visual generalization. However, deep neural networks—our best models of category learning—are unable to learn from the same visual diet as children, limiting our ability to construct mechanistic accounts of early category and word learning. While infants learn the categories that words refer to while experiencing a few categories (e.g., spoons, cups) dramatically more often than others (and while experiencing certain categories as drawings or illustrations), current models learn from uniform distributions of categories where exemplars are photos taken from the adult perspective. The proposed work will overcome these limitations and use deep neural networks to understand how children’s everyday visual experiences interact with statistical learning mechanisms to yield the category representations that support early word learning. In Aim 1 (K99 phase), I will determine how variability in children’s visual experiences relates to early word learning outcomes. To do so, I will collect a representative dataset of the categories in the infant view using a parent-report measure and photographs taken from the infant perspective, and determine whether variance in visual experience with different categories predicts which words are learned earlier in development. In Aim 2 (K99/R00 phase) I will evaluate how well current models and infants learn from diverse sets of realistic visual inputs using looking-time experiments and model simulations, evaluating whether networks with more neurally plausible architectures are better predictors of infant learning. In Aim 3 (R00 phase), I will adapt an existing deep neural network for infant categorization. To do so, I will build output layers on top of a state-of-the-art unsupervised model of object segmentation to identify the categories in the infant view and to make principled generalizations from frequently experienced to infrequently experienced but similar categories—much like young children in early development. The empirical findings and resulting computational model will provide insight into the relevant visual experiences for learning the categories that words refer to. This understanding of how typically-developing children learn rapidly and efficiently in everyday environments is essential to improve interventions for children struggling to learn the categories that words refer to, including late talkers, children with ASD, and children recovering from blindness (e.g., after cataract surgery). This award will build upon my strong background in visual category recognition and provide me with relevant training in both early language acquisition and deep neural networks via interdisciplinary workshops, coursework, and the scientific expertise of a team of mentors and consultants. This award will thus facilitate my transition to become an independent investigator at the forefront of cognitive development, vision science, and machine learning.
项目摘要 早期的词汇学习是一项主要的发展成就,它建立在视觉范畴的基础上 学习:学习单词“狗”指的是包括吉娃娃而不包括狼的类别狗, 孩子们必须做出令人印象深刻的视觉概括。然而,深度神经网络-我们最好的模型, 类别学习-无法像孩子一样从相同的视觉饮食中学习,限制了我们构建的能力 早期类别和单词学习的机械解释。当婴儿学习单词所指的类别时, 到当经历几个类别(例如,勺子,杯子)比其他人更频繁(而 经历某些类别作为绘图或插图),当前模型从均匀分布的 类别,其中范例是从成人视角拍摄的照片。拟议的工作将克服 这些限制,并使用深度神经网络来了解儿童的日常视觉体验 与统计学习机制交互,以产生支持早期单词的类别表示 学习在目标1(K99阶段)中,我将确定儿童视觉体验的可变性与早期视觉体验的关系。 词汇学习成果。为此,我将收集婴儿视图中类别的代表性数据集 使用父母报告的措施和从婴儿角度拍摄的照片,并确定是否 不同类别的视觉经验的差异预测了哪些单词在发展过程中更早学习。 在目标2(K99/R 00阶段)中,我将评估当前模型和婴儿从不同的 逼真的视觉输入,使用看时间实验和模型模拟,评估网络是否与 更合理的神经结构是婴儿学习的更好预测者。在目标3(R 00阶段),我将适应 现有的用于婴儿分类的深度神经网络。为此,我将在 对象分割的最先进的无监督模型,以识别婴儿视图中的类别, 从经常经历到不经常经历但相似的原则性概括 类别--就像处于早期发展阶段的儿童一样。实证研究结果和由此产生的计算 模型将为学习单词所指的类别提供相关的视觉体验。 这种对典型发育儿童在日常环境中如何快速有效地学习的理解 对于努力学习单词所指类别的儿童来说, 晚说话者、患有ASD的儿童和从失明中恢复的儿童(例如,白内障手术后)。这个奖项 我将建立在我在视觉类别识别方面的强大背景之上,并为我提供相关的培训, 早期语言习得和深度神经网络通过跨学科研讨会,课程, 导师和顾问团队的科学专业知识。因此,这个奖项将促进我成为 认知发展、视觉科学和机器学习前沿的独立研究者。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel developmental changes in children's production and recognition of line drawings of visual concepts.
儿童对视觉概念线条图的制作和识别的平行发展变化。
  • DOI:
    10.1038/s41467-023-44529-9
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Long,Bria;Fan,JudithE;Huey,Holly;Chai,Zixian;Frank,MichaelC
  • 通讯作者:
    Frank,MichaelC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bria Long其他文献

Bria Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bria Long', 18)}}的其他基金

Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
  • 批准号:
    10428182
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 10.54万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了