Grounding models of category learning in the visual experiences of young children

幼儿视觉体验中类别学习的基础模型

基本信息

  • 批准号:
    10704062
  • 负责人:
  • 金额:
    $ 10.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-16 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Early word learning is a major developmental achievement that rests on a foundation of visual category learning: to learn that the word “dog” refers to a category dog that includes chihuahuas and excludes wolves, children must make an impressive visual generalization. However, deep neural networks—our best models of category learning—are unable to learn from the same visual diet as children, limiting our ability to construct mechanistic accounts of early category and word learning. While infants learn the categories that words refer to while experiencing a few categories (e.g., spoons, cups) dramatically more often than others (and while experiencing certain categories as drawings or illustrations), current models learn from uniform distributions of categories where exemplars are photos taken from the adult perspective. The proposed work will overcome these limitations and use deep neural networks to understand how children’s everyday visual experiences interact with statistical learning mechanisms to yield the category representations that support early word learning. In Aim 1 (K99 phase), I will determine how variability in children’s visual experiences relates to early word learning outcomes. To do so, I will collect a representative dataset of the categories in the infant view using a parent-report measure and photographs taken from the infant perspective, and determine whether variance in visual experience with different categories predicts which words are learned earlier in development. In Aim 2 (K99/R00 phase) I will evaluate how well current models and infants learn from diverse sets of realistic visual inputs using looking-time experiments and model simulations, evaluating whether networks with more neurally plausible architectures are better predictors of infant learning. In Aim 3 (R00 phase), I will adapt an existing deep neural network for infant categorization. To do so, I will build output layers on top of a state-of-the-art unsupervised model of object segmentation to identify the categories in the infant view and to make principled generalizations from frequently experienced to infrequently experienced but similar categories—much like young children in early development. The empirical findings and resulting computational model will provide insight into the relevant visual experiences for learning the categories that words refer to. This understanding of how typically-developing children learn rapidly and efficiently in everyday environments is essential to improve interventions for children struggling to learn the categories that words refer to, including late talkers, children with ASD, and children recovering from blindness (e.g., after cataract surgery). This award will build upon my strong background in visual category recognition and provide me with relevant training in both early language acquisition and deep neural networks via interdisciplinary workshops, coursework, and the scientific expertise of a team of mentors and consultants. This award will thus facilitate my transition to become an independent investigator at the forefront of cognitive development, vision science, and machine learning.
项目总结

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parallel developmental changes in children's production and recognition of line drawings of visual concepts.
儿童对视觉概念线条图的制作和识别的平行发展变化。
  • DOI:
    10.1038/s41467-023-44529-9
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Long,Bria;Fan,JudithE;Huey,Holly;Chai,Zixian;Frank,MichaelC
  • 通讯作者:
    Frank,MichaelC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bria Long其他文献

Bria Long的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bria Long', 18)}}的其他基金

Grounding models of category learning in the visual experiences of young children
幼儿视觉体验中类别学习的基础模型
  • 批准号:
    10428182
  • 财政年份:
    2022
  • 资助金额:
    $ 10.54万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 10.54万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 10.54万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 10.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了