Dynamic imaging and tissue biomarker models to delineate indolent from aggressive breast calcifications
动态成像和组织生物标志物模型可区分惰性乳腺钙化和侵袭性乳腺钙化
基本信息
- 批准号:10704546
- 负责人:
- 金额:$ 45.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAppearanceBenignBiologicalBiological MarkersBiologyBiopsyBreastBreast Cancer DetectionCalibrationCancer BiologyClassificationClinicalClinical ManagementClinical TrialsComputer AssistedComputer Vision SystemsCreativenessDataDatabasesDecision MakingDevelopmentDiagnosisDiagnosticDiagnostic ImagingDimensionsDiseaseDisease ProgressionEpigenetic ProcessEvolutionExcisionFailureFosteringFoundationsGoalsGrowthHarm ReductionHealthHealth Care CostsHistopathologyImageIn Situ LesionIndolentJointsLeadLesionMalignant NeoplasmsMammographic screeningMammographyMathematicsMeasuresMethodsMissionModalityModelingMonitorMorbidity - disease rateNoninfiltrating Intraductal CarcinomaOperative Surgical ProceduresOutcomePathologyPatient MonitoringPatient riskPatientsPatternPerformancePractice GuidelinesPredictive ValuePrognosisPublic HealthResearchResourcesRiskSurgical OncologyTestingTimeTissue SampleTissuesUncertaintyUnited StatesUnited States National Institutes of HealthWomanWorkbreast lesioncalcificationclinical decision-makingclinical practicecohortfollow-upimaging biomarkerimprovedinfiltrating duct carcinomainnovationmalignant breast neoplasmmolecular clockmultidisciplinaryneoplasticovertreatmentpersonalized medicinepredictive markerprognosticprognostic modelprospectivepsychological distressradiological imagingradiologistradiomicsrisk stratificationscreeningscreening guidelinesscreening programserial imagingtissue biomarkerstreatment planningtumor
项目摘要
ABSTRACT. Breast cancer screening programs suffer from false positive mammograms, unnecessary biopsies,
overdiagnosis, and overtreatment. A major contributor to the poor performance of screening mammography is
the diagnostic and prognostic uncertainty of mammographically detected calcifications. Breast calcifications
represent a biological continuum from benign disease to ductal carcinoma in situ (DCIS) to aggressive cancer.
Radiologists struggle to correlate their imaging appearance with the underlying pathology and roughly two-thirds
of biopsied calcifications return with a benign pathology. Although calcifications evolve dynamically over time,
the current management strategy relies heavily on the static appearance of calcifications from the most recent
mammogram. Most women in screening programs have multiple mammograms, yet this temporal information is
consistently underutilized in clinical decision making. There is thus an urgent need to quantify the dynamics of
calcifications from serial mammograms, and to characterize the relationship between calcification trajectories
and disease biology. In the absence of such innovation, increasingly sensitive screening modalities are expected
to further increase the burden of unnecessary diagnostic work-up and breast cancer overdiagnosis. The central
hypothesis of this proposal is that dynamic imageable and tissue biomarkers contain actionable diagnostic and
prognostic information about mammographic calcifications. The use of established diagnostic imaging
(mammography) in conjunction with investigational imageable biomarkers will enable testing of this hypothesis.
Key to this proposal will be the creation of a large database of retrospectively and prospectively collected cohorts
of patients with serial mammograms, tissue samples and clinical outcomes. This proposal will consist of three
specific aims: (1) Develop a static model of breast calcifications to improve the clinical performance of
mammography screening; 2) Develop a dynamic model of breast calcifications to predict histopathology and
DCIS prognosis; and 3) Combine the dynamic calcification model with tissue-based biomarkers of the underlying
evolutionary dynamics to delineate DCIS prognosis. The proposed research is highly innovative because it adds
the temporal dimension to computer-assisted classification of mammographic calcifications, yields a joint
characterization of calcification growth trajectories and lesion biology, and develops dynamic risk models to
predict invasive progression in women undergoing active monitoring for DCIS. This proposal will be co-led by
Dr. Grimm (breast radiologist) and Dr. Ryser (mathematical modeler) supported by a highly collaborative
multidisciplinary team with expertise in cancer biology, computer vision, and surgical oncology. The overall
objective of this proposal is to develop a dynamic imageable biomarker that delineates lethal cancer from non-
lethal disease by leveraging the temporal dimension of serial mammograms. Ultimately, the long-term goal of
our work is to better identify which calcifications to biopsy (reduce unnecessary biopsies), and if pre-invasive
DCIS is found, to predict whether it will remain indolent or progress to lethal cancer (reduce overtreatment).
抽象的。乳腺癌筛查项目存在假阳性乳房X光检查、不必要的活检、
过度诊断和过度治疗。筛查乳房X光检查性能不佳的一个主要原因是
乳房X光检查检测到的钙化的诊断和预后不确定性。乳房钙化
代表从良性疾病到导管原位癌(DCIS)再到侵袭性癌症的生物连续体。
放射科医生很难将他们的影像表现与潜在的病理学联系起来,大约三分之二的人
的活检钙化灶以良性病理状态返回。尽管钙化随时间动态演变,
目前的管理策略在很大程度上依赖于最近的钙化的静态外观
乳房X光检查。大多数参与筛查计划的女性都会进行多次乳房 X 光检查,但这种时间信息是
在临床决策中始终未得到充分利用。因此,迫切需要量化
连续乳房 X 光检查中的钙化,并表征钙化轨迹之间的关系
和疾病生物学。在缺乏此类创新的情况下,预计筛查方式将变得越来越敏感
进一步增加不必要的诊断检查和乳腺癌过度诊断的负担。中央
该提案的假设是动态可成像和组织生物标志物包含可操作的诊断和
有关乳房X线照相钙化的预后信息。使用已建立的诊断成像
(乳房X线照相术)与研究性可成像生物标志物相结合将能够检验这一假设。
该提案的关键是创建一个包含回顾性和前瞻性收集的队列的大型数据库
患者的连续乳房X光检查、组织样本和临床结果。该提案将包括三部分
具体目标:(1)开发乳腺钙化的静态模型,以改善乳腺钙化的临床表现
乳房X光检查; 2) 开发乳腺钙化的动态模型来预测组织病理学和
DCIS 预后; 3) 将动态钙化模型与底层的组织生物标志物相结合
描述 DCIS 预后的进化动力学。拟议的研究具有高度创新性,因为它增加了
乳房X线照相钙化的计算机辅助分类的时间维度产生了联合
钙化生长轨迹和病变生物学的表征,并开发动态风险模型
预测接受 DCIS 主动监测的女性的侵袭性进展。该提案将由以下人士共同牵头
Grimm 博士(乳腺放射科医生)和 Ryser 博士(数学建模师)得到高度协作的支持
多学科团队拥有癌症生物学、计算机视觉和肿瘤外科方面的专业知识。整体
该提案的目标是开发一种动态可成像生物标志物,用于区分致命性癌症和非致命性癌症。
通过利用连续乳房X光检查的时间维度来发现致命疾病。最终的长期目标是
我们的工作是更好地确定哪些钙化需要活检(减少不必要的活检),以及是否需要进行侵入性检查
发现 DCIS 可以预测它是否会保持惰性或进展为致命的癌症(减少过度治疗)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars J Grimm其他文献
Current Practice and Variation in Same-Day Services in Breast Imaging: A Multi-Institutional National Survey of the Society of Breast Imaging Membership.
乳腺影像当日服务的当前实践和变化:对乳腺影像协会会员资格的多机构全国调查。
- DOI:
10.1093/jbi/wbad111 - 发表时间:
2024 - 期刊:
- 影响因子:1.5
- 作者:
B. Dontchos;Katerina Dodelzon;Emily Sonnenblick;Beatriu Reig;Kristen Coffey;Vidhi S Kacharia;Lars J Grimm - 通讯作者:
Lars J Grimm
Screening mammographic performance by race and age in the National Mammography Database: 29,479,665 screening mammograms from 13,181,241 women.
在国家乳房 X 光检查数据库中按种族和年龄筛查乳房 X 光检查表现:来自 13,181,241 名女性的 29,479,665 次筛查乳房 X 光检查。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.8
- 作者:
Cindy S. Lee;Lenka Goldman;Lars J Grimm;Ivy Xinyue Liu;Michael Simanowith;Robert D. Rosenberg;Margarita Zuley;Linda Moy - 通讯作者:
Linda Moy
Breast Cancer Screening and Treatment Clinical Trials Updated for 2023.
乳腺癌筛查和治疗临床试验更新至 2023 年。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.5
- 作者:
Imarhia E Enogieru;Christopher E Comstock;Lars J Grimm - 通讯作者:
Lars J Grimm
Lars J Grimm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars J Grimm', 18)}}的其他基金
Dynamic imaging and tissue biomarker models to delineate indolent from aggressive breast calcifications
动态成像和组织生物标志物模型可区分惰性乳腺钙化和侵袭性乳腺钙化
- 批准号:
10448752 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
相似海外基金
AMFaces: Advanced Additive Manufacturing of User-Focused Facial Prostheses with Real-Life Colour Appearance
AMFaces:以用户为中心的面部假体的先进增材制造,具有真实的色彩外观
- 批准号:
EP/W033968/1 - 财政年份:2023
- 资助金额:
$ 45.86万 - 项目类别:
Research Grant
Understanding the appearance mechanism of ferroelectric liquid crystals showing spontaneous polarization in the director and developing their applications.
了解铁电液晶在指向矢中表现出自发极化的出现机制并开发其应用。
- 批准号:
23H00303 - 财政年份:2023
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Body, appearance, and health surveillance in female youth friendship contexts
女性青少年友谊背景下的身体、外表和健康监测
- 批准号:
2690554 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
Studentship
Elucidating the mechanism in the color appearance of small-field stimulus on chromatic surroundings
阐明彩色环境中小场刺激的颜色外观机制
- 批准号:
22K20317 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Path-space Exploration for Light Transport and Appearance Modelling
光传输和外观建模的路径空间探索
- 批准号:
RGPIN-2018-05669 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
Discovery Grants Program - Individual
Learning to Recognize Faces Despite Within-Person Variability in Appearance: A Developmental Approach
尽管人与人之间的外表存在差异,但仍要学习识别面孔:一种发展方法
- 批准号:
RGPIN-2022-04386 - 财政年份:2022
- 资助金额:
$ 45.86万 - 项目类别:
Discovery Grants Program - Individual
A sociological study on appearance discrimination during employment selection
就业选择中外表歧视的社会学研究
- 批准号:
21K13447 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Appearance of negative influences of global warming on crop production and measures against it
全球变暖对农作物生产的负面影响的显现及应对措施
- 批准号:
21H02330 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The influence of river environment on urban appearance of wildlife
河流环境对野生动物城市面貌的影响
- 批准号:
21K12322 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Method for assessing women's perceptions of their appearance in the context of breast cancer care
评估乳腺癌护理背景下女性对其外表的看法的方法
- 批准号:
10196213 - 财政年份:2021
- 资助金额:
$ 45.86万 - 项目类别:














{{item.name}}会员




