Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
基本信息
- 批准号:10704027
- 负责人:
- 金额:$ 64.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectBiologicalCell LineageCellsChemicalsComplexDIF factorDevelopmentDevelopmental BiologyEctopic ExpressionEndocrineEndodermEndoderm CellEndoribonucleasesEngineeringExhibitsFeedbackFibroblastsFunctional disorderGene ExpressionGenesGeneticGenetic EngineeringGrowth FactorHepaticHumanIn VitroIndividualInvestigationLiverManualsMeasuresMesodermMethodsModelingOrganOrganogenesisOrganoidsOutputPancreasPatientsPhysiologyPopulationPopulation ControlProductionProtocols documentationRegulationReproducibilityResearchSignal TransductionSpecific qualifier valueStructureSystemTechniquesTissuesVascularizationWorkcell typecontrol theorydesigndevelopmental plasticityin vivoinduced pluripotent stem cellinnovationnovelpancreas developmentprogenitorprogramsratiometricrecombinasesensorsingle-cell RNA sequencingsmall moleculestem cell biologystem cell differentiationsynthetic biologytranscription factor
项目摘要
Major advancements in stem cell biology have paved the way for innovation in organoid engineering. Organoids
are 3D tissues derived from human induced pluripotent stem cells (hiPSCs) generated by reprogramming patient-
specific adult cells, such as fibroblasts. While organoids show great promise as testbeds for investigating devel-
opmental biology, current methods for organoid production are limited by their reliance on external inputs, such
as growth factors and small molecules, which affect cells imprecisely and give rise to immature organoids that do
not faithfully recapitulate in vivo physiology and functionality. The resulting organoids are size-constrained, lim-
ited to a small set of cell types, and do not generally develop mature tissue that exhibits the functionality of fully
developed organs. While we have previously demonstrated genetic programs that enable organoids to generate
all requisite cell types in liver, variability in cell ratios remains an open challenge for achieving reproducible, high
quality organoids. Further, progress is blocked by the inability to reliably guide multi-lineage specification, the lack
of precise timing of multistep differentiation, and the inability to make robust bifurcation decisions that determine
the ratios of the resulting cell types.
To overcome these obstacles, we will combine synthetic biology, developmental biology, and control theory to
design novel open and closed loop genetic controllers that individually guide differentiation from within each cell
to form unique new 3D tissue: vascularized pancreatic organoids with defined ratios of endocrine and exocrine
cells. We will demonstrate how these new organoids can serve as more sophisticated and comprehensive models
for investigating developmental biology principles. This work will spearhead a transformation in organoid synthesis
by shifting the field from manual addition of inductive chemical signals to cell type conditional, self-timed ectopic
expression of transcription factors that induce differentiation. Building upon the premise that 1) gene sensors can
detect cell types specific to differentiation stages, and 2) at least in certain important cases, regulated expression
of lineage-specifying transcription factors can guide differentiation to the next stage, our main hypothesis is that
feedback regulation of cell lineage bifurcation decisions can lead to more robust and reproducible sub-population
ratios in organoids in comparison to open loop approaches. Our organoids will contain synthetic developmental
programs that are self-timed and globally-orchestrated, with cells working together to generate the requisite ratios.
We will create a platform for programmed bifurcation decisions that can be used for other differentiation steps
in the pancreas, and more broadly to other organoid and tissue types. We will use this platform to perform
novel developmental studies to systematically vary the ratio of endocrine to exocrine cells and measure the
consequences on exocrine/endocrine cells and their differentiation and function. The ability to precisely vary the
ratio while studying gene expression profiles, the organoid secretome, and its affects on target cells will provide
invaluable benefit in the investigation of pancreas development and dysfunction.
干细胞生物学的重大进展为类器官工程的创新铺平了道路。瀑样
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RON WEISS其他文献
RON WEISS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RON WEISS', 18)}}的其他基金
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
- 批准号:
10470862 - 财政年份:2021
- 资助金额:
$ 64.65万 - 项目类别:
Genetically Programmed Pancreatic Organoids with Self-Adaptive Multi-Lineage Population Control
具有自适应多谱系群体控制的基因编程胰腺类器官
- 批准号:
10278596 - 财政年份:2021
- 资助金额:
$ 64.65万 - 项目类别:
Programmed Differentiation Circuits for Organoids using Meso-Microfluidics
使用介观微流体对类器官进行编程分化电路
- 批准号:
9896824 - 财政年份:2018
- 资助金额:
$ 64.65万 - 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
- 批准号:
9232096 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
Reprogramming the tumor microenvironment via self-amplified RNA (SafeR) circuits
通过自扩增 RNA (SafeR) 电路重新编程肿瘤微环境
- 批准号:
9206914 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
RNA circuits for cell state determination in mammalian cells in vitro and in vivo
用于体外和体内哺乳动物细胞状态测定的RNA电路
- 批准号:
9106976 - 财政年份:2016
- 资助金额:
$ 64.65万 - 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
- 批准号:
8421989 - 财政年份:2013
- 资助金额:
$ 64.65万 - 项目类别:
Genetic circuits for high-throughput, multi-sensory, live cell microRNA prof
用于高通量、多感官、活细胞 microRNA 教授的遗传电路
- 批准号:
8601529 - 财政年份:2013
- 资助金额:
$ 64.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 64.65万 - 项目类别:
Research Grant