An Improved Robotic Electrophysiology Platform for Arrhythmia Ablation

一种改进的心律失常消融机器人电生理学平台

基本信息

  • 批准号:
    10704224
  • 负责人:
  • 金额:
    $ 98.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Arrhythmias result from disorganized electrical signals within the heart leading to irregular contractions and are a leading cause of death in the US. Ventricular tachycardia and fibrillation are the most serious arrhythmias resulting in 300k annual US deaths, followed by 130k US deaths due to atrial fibrillation (AF). With a prevalence of 6M in the US, AF is the most common arrhythmia, resulting in 750k annual US hospitalizations. AF-associated medical costs will exceed $50B by 2035. AF therapies first rely on pharmaceuticals to prevent blood clots and to restore rhythm. If these approaches fail, electrophysiology (EP) procedures are performed which pass electrical currents (or coolants) through the catheter’s tip to destroy tissues disrupting proper electrical signals. However, manual catheters rely on complex tension-wire designs operated from a meter away which makes effective catheter control difficult, leading to injury and AF recurrence. Robotic platforms have struggled to improve catheter control for decades. Most robotic systems manipulate standard manual catheters; however, learning curves remain high and catheter tip control is unimproved. Magnet-based systems that use magnetic catheters improve control; however, the systems are impractically large, difficult to use, and require a custom angiography suite. Because all existing robotic solutions remain prohibitively expensive, such systems are found only in a limited number of high-volume centers despite that more than 80% of all hospitals providing ablation are lower-volume centers. What is needed is an affordable and workflow-friendly robotic technology that improves catheter control and enables expertise within high- volume EP centers to be remotely shared with lower-volume centers for training and procedural support. UNandUP’s MAP-EP (Magnetic Assistive Platform for EP) system controls novel linkage-based magnetic catheters using a magnet mass 50X smaller than previously possible. As a result, the MAP-EP system can be installed into existing digital angiography suites without the need for a new c-arm or room construction. Because energy is not expended fighting catheter restoring forces, low magnetic fields achieve stable, accurate, and precise heart wall contact. The technology complements standard EP workflows, is affordable for low-volume EP centers, and provides telerobotic access to expertise within high-volume centers. In the Phase I effort, a prototype magnet workstation was constructed, novel magnetic materials were developed to manufacture smaller and more complex magnets than previously possible, and prototype catheters were successfully built and assessed using known heart phantoms. I-Corps and TABA participation were completed, and FDA pre-submission meetings were held in support of mapping [510(k)], ablation (PMA), and Early Feasibility Studies. For the proposed effort, UNandUP will develop preclinical versions of its system. Efficacy studies will be completed using known beating heart phantoms. Biocompatibility testing and large- animal safety and feasibility studies will be conducted following published methods.
心律失常是由心脏内紊乱的电信号引起的,导致不规则的收缩, 是美国的主要死因室性心动过速和室颤是最严重的心律失常 导致每年30万美国人死亡,随后13万美国人死于心房颤动(AF)。与 在美国的患病率为6个月,AF是最常见的心律失常,导致美国每年有75万人住院。 到2035年,AF相关的医疗费用将超过500亿美元。AF治疗首先依赖于药物来预防 血凝块恢复心律如果这些方法失败,则进行电生理(EP)程序 其通过导管的尖端传递电流(或冷却剂)以破坏组织, 电信号然而,手动导管依赖于复杂的张力线设计, 这使得有效的导管控制变得困难,导致损伤和AF复发。 几十年来,机器人平台一直在努力改善导管控制。大多数机器人系统 标准手动导管;然而,学习曲线仍然很高,并且导管尖端控制未得到改进。 使用磁性导管的基于磁体的系统改善了控制;然而,该系统是不切实际的。 体积大,使用困难,需要定制的血管造影套件。因为所有现有的机器人解决方案仍然存在 由于价格昂贵,这种系统仅在有限数量的高容量中心中发现, 提供消融的所有医院中超过80%是低容量中心。我们需要的是负担得起的 和工作流程友好的机器人技术,可改善导管控制, 容量EP中心与容量较小的中心远程共享,以提供培训和程序支持。 UNANDUP的MAP-EP(EP磁性辅助平台)系统控制新型基于连杆的磁性 导管使用的磁体质量比以前可能的小50倍。因此,MAP-EP系统可以是 安装到现有的数字血管造影套件中,而不需要新的C形臂或房间结构。 由于能量不消耗于对抗导管恢复力,低磁场实现稳定, 准确的心脏壁接触该技术补充了标准EP工作流程,价格实惠 为低容量电生理中心,并提供远程机器人访问的专业知识,在高容量中心。 在第一阶段的工作中,建造了一个原型磁铁工作站, 开发用于制造比以前更小,更复杂的磁体, 使用已知的心脏模型成功地构建和评估了导管。I-Corps和TABA参与 完成,并举行了FDA预提交会议,以支持标测[510(k)]、消融(PMA), 早期可行性研究。对于拟议的努力,UNandUP将开发其系统的临床前版本。 将使用已知的跳动心脏模型完成疗效研究。生物相容性测试和大型- 动物安全性和可行性研究将按照公布的方法进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francis Milton Creighton其他文献

Francis Milton Creighton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francis Milton Creighton', 18)}}的其他基金

Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
  • 批准号:
    10693650
  • 财政年份:
    2023
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10464028
  • 财政年份:
    2022
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10451688
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10253434
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
Flow Acceleration for Stroke Thrombolysis (FAST) System
中风溶栓 (FAST) 系统的流量加速
  • 批准号:
    10572098
  • 财政年份:
    2021
  • 资助金额:
    $ 98.26万
  • 项目类别:
An Improved Intra-Arterial Delivery Platform for Glioblastoma Multiforme
改进的多形性胶质母细胞瘤动脉内输送平台
  • 批准号:
    9904911
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
ICorps Administrative Supplement for A Remotely-Operated Robotic Endovascular Platform to Improve Thrombectomy Access
ICorps 针对远程操作机器人血管内平台的行政补充,以改善血栓切除术的可及性
  • 批准号:
    10045638
  • 财政年份:
    2020
  • 资助金额:
    $ 98.26万
  • 项目类别:
Acute Ischemic Stroke Neuroprotection Platform to overcome Care Disparities for Rural Populations
急性缺血性中风神经保护平台可克服农村人口的护理差异
  • 批准号:
    9794241
  • 财政年份:
    2019
  • 资助金额:
    $ 98.26万
  • 项目类别:
An Improved Robotic Electrophysiology Platform for Arrhythmia Ablation
一种改进的心律失常消融机器人电生理学平台
  • 批准号:
    10481922
  • 财政年份:
    2019
  • 资助金额:
    $ 98.26万
  • 项目类别:
Rapid Magnetomotive Thrombolysis for Stroke
快速磁动力溶栓治疗中风
  • 批准号:
    8833670
  • 财政年份:
    2014
  • 资助金额:
    $ 98.26万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 98.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了