Sub-cellular Targeting of Endothelial ROS in Myocardial Ischemia
心肌缺血中内皮活性氧的亚细胞靶向
基本信息
- 批准号:10705336
- 负责人:
- 金额:$ 61.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-10 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-nitrotyrosineAMP-activated protein kinase kinaseAddressAnabolismAnimal ModelAnimalsAntioxidantsArteriesBiogenesisBiological AssayBlood VesselsBrain Hypoxia-IschemiaCardiac Surgery proceduresCardiovascular DiseasesCell ProliferationCell SurvivalChronicCoagulation ProcessComplexCongressesCoronaryCoronary ArteriosclerosisCoronary VesselsDataDown-RegulationElectron TransportElectronsEndothelial CellsEndotheliumEnergy SupplyExposure toExtravasationFamily suidaeFibrinFundingGenerationsGlucoseGlycolysisGrantHeartHeart AtriumHumanHypoxiaIncubatedInfarctionIschemiaLateralLigationManuscriptsMeasuresMediatingMembrane PotentialsMitochondriaModelingMolecularMorbidity - disease rateMusMyocardial InfarctionMyocardial IschemiaNADPH OxidaseNutrientOperative Surgical ProceduresOutcomeOxidantsOxidative PhosphorylationOxidative StressOxygenOxygen ConsumptionPatientsProductionProteomicsPublishingReactive Oxygen SpeciesRecoveryRecovery of FunctionReportingResearchSOD2 geneSourceStrokeSystemTherapeuticTissuesTransgenesTransgenic AnimalsTransgenic OrganismsUnited States National Institutes of HealthVascular EndotheliumWorkameroidangiogenesisbasecardiac angiogenesiscardiovascular disorder preventiondensityextracellularfatty acid oxidationgenetic manipulationheart functionimprovedin vivoin vivo evaluationinnovationinsightmimeticsmitochondrial membranenanodrugnanoparticlenanoparticle drugneoplastic cellnormoxianovelnovel strategiesoverexpressionphosphoproteomicspreservationpreventrecruitresiliencesubcellular targetingtrend
项目摘要
renewal application is based on the novel findings that reduction in mito-ROS, using genetic
manipulation and/or nanoparticle drugs, improve survival and proliferation of coronary EC and help recover
cardiac function in a post-myocardial infarct (MI) animal model and human atrial tissue. Preliminary findings
in the current application demonstrate that reduction of mito-ROS using transgene (MnSOD) and nanodrugs
(JP4-039, XJB5-131) induce mitochondrial complex I biogenesis (proteomic and phosphoproteomic data)
and oxidative phosphorylation (Ox-Phos) in EC resulting in coronary angiogenesis cardiac function recovery
in post-MI heart.
This innovative
EC, like most tumor cells, utilizes anerobic glycolysis as a major (85%) source of ATP
Thus, the shift from less-
efficient energy production system glycolysis (2 ATP/glucose molecule), to a more efficient Ox-Phos (34-36
ATP/glucose) may provide critical energy support to EC needed during ischemia (low glucose, oxygen). Here,
we propose to examine a novel overarching hypothesis that modulation of mito-ROS improves
production, while EC mitochondria are mostly involved in dNTP biosynthesis.
Δψm and
‘super-complex’ (SC) formation resulting in efficient electron transport chain (ETC) and Ox-Phos-mediated
ATP generation in EC during ischemia. This shift from
glycolysis to a more efficient mitochondrial Ox-Phos
may provide resilience/survival to coronary EC during ‘energy crisis’ in myocardial ischemia.
The therapeutic
benefit of intervening on subcellular ROS level will be best realized by specific down regulation of mito-ROS
in ECs that have been exposed to ischemia/hypoxia. This hypothesis will be fully tested in vivo using our
novel EC-specific transgenic MnSOD (SOD-OE; mitochondrial antioxidant) animals and supported using
mitochondria-specific nitroxide and nanoparticle antioxidant in large animal model (swine) and in coronary
vessels from CVD patients undergoing cardiac surgery. We propose three Specific Aims. Aim 1: Elucidate
the molecular mechanisms by which modulation of mitochondrial ROS protect coronary EC from oxidative
stress and induce coronary angiogenesis during myocardial ischemia. Using SOD-VE transgenic animals
and myocardial infarct-mimicking (LAD ligation) surgeries, Δψm, super-complex (SC) formation, oxygen
consumption rate (OCR) versus extracellular acidification rate (ECAR), ATP synthesis, will be assessed. Aim
2: Determine the effects mitochondria-targeted MnSOD-mimetic (JP4-039, XJB-5-131) nanoparticles on
post-infarct vessel density and recovery of cardiac function in mice and on chronic myocardial ischemia in
large animals (swine). Aim 3: Elucidate the molecular mechanisms by which mitochondrial antioxidant
nanoparticles (JP4-039/XJB-5-131) improve angiogenic potential of human coronary vessels (from cardiac
surgery patients) ex vivo. This study using unique animal models, human atrial tissue, and mitochondria-
specific antioxidant will provide novel insights into the mechanisms by which mito-ROS can improve EC
survival and angiogenesis by recruiting mitochondria as an efficient energy generator during ischemia.
更新申请是基于新的发现,减少线粒体活性氧,使用遗传
操作和/或纳米颗粒药物,改善冠状动脉EC的存活和增殖,并帮助恢复
心肌梗塞(MI)后动物模型和人心房组织中的心脏功能。初步调查结果
在本申请中,证明了使用转基因(MnSOD)和纳米药物减少线粒体-ROS
(JP 4 -039,XJB 5 -131)诱导线粒体复合物I生物发生(蛋白质组学和磷酸蛋白质组学数据)
和氧化磷酸化(Ox-Phos)导致冠状动脉血管生成,心功能恢复
心肌梗死后心脏
这一创新
EC,像大多数肿瘤细胞一样,利用无氧糖酵解作为ATP的主要(85%)来源
所以说,少一点的转变,
有效的能量生产系统糖酵解(2 ATP/葡萄糖分子),以更有效的Ox-Phos(34-36
ATP/葡萄糖)可以为缺血(低葡萄糖、氧)期间所需的EC提供关键的能量支持。在这里,
我们提出了一个新的总体假设,即线粒体活性氧的调节可以改善
而EC线粒体主要参与dNTP的生物合成。
Δ Δ m和
“超复合物”(SC)形成,导致有效的电子传递链(ETC)和Ox-Phos介导的
缺血时EC中ATP的产生。这种转变,从
糖酵解为更有效的线粒体Ox-Phos
可能在心肌缺血的“能量危机”期间为冠状动脉EC提供弹性/存活。
治疗
干预亚细胞ROS水平的益处最好通过特异性下调线粒体-ROS来实现
在已经暴露于缺血/缺氧的EC中。这一假设将在体内进行充分测试,使用我们的
新的EC特异性转基因MnSOD(SOD-OE;线粒体抗氧化剂)动物和使用
在大型动物模型(猪)和冠状动脉中的动脉特异性氮氧化物和纳米颗粒抗氧化剂
接受心脏手术的CVD患者的血管。我们提出三个具体目标。目标1:阐明
调节线粒体ROS保护冠状动脉EC免受氧化损伤的分子机制
在心肌缺血期间应激并诱导冠状动脉血管生成。使用SOD-VE转基因动物
和心肌梗死模拟(LAD结扎)手术,Δ m,超复合物(SC)形成,氧
将评估消耗速率(OCR)与细胞外酸化速率(ECAR)、ATP合成的关系。目的
2:确定靶向MnSOD模拟物(JP 4 -039,XJB-5-131)纳米颗粒对细胞增殖的影响。
对小鼠心肌梗死后血管密度和心功能恢复的影响,以及对慢性心肌缺血小鼠的影响。
大型动物(猪)。目的3:阐明线粒体抗氧化剂对心肌细胞凋亡的分子机制。
纳米颗粒(JP 4 -039/XJB-5-131)改善人冠状血管(来自心脏)的血管生成潜力
手术患者)离体。这项研究使用独特的动物模型,人类心房组织和线粒体-
特异性抗氧化剂将为线粒体活性氧改善EC的机制提供新的见解
存活和血管生成通过募集线粒体作为缺血期间的有效能量发生器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruhul Abid其他文献
Ruhul Abid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruhul Abid', 18)}}的其他基金
Sub-cellular Targeting of Endothelial ROS in Myocardial Ischemia
心肌缺血中内皮活性氧的亚细胞靶向
- 批准号:
9540053 - 财政年份:2017
- 资助金额:
$ 61.32万 - 项目类别:
Short-Term Training Program to Increase Diversity in Health-Related Research
增加健康相关研究多样性的短期培训计划
- 批准号:
10602535 - 财政年份:2007
- 资助金额:
$ 61.32万 - 项目类别:
Short-Term Training Program to Increase Diversity in Health-Related Research
增加健康相关研究多样性的短期培训计划
- 批准号:
10360156 - 财政年份:2007
- 资助金额:
$ 61.32万 - 项目类别:
Short-Term Training Program to Increase Diversity in Health-Related Research
增加健康相关研究多样性的短期培训计划
- 批准号:
10208927 - 财政年份:2007
- 资助金额:
$ 61.32万 - 项目类别:
Improvement of Coronary Vascular Functions by Endothelium targeted increase in reactive oxygen species
通过内皮靶向增加活性氧来改善冠状血管功能
- 批准号:
9298675 - 财政年份:
- 资助金额:
$ 61.32万 - 项目类别:
Improvement of Coronary Vascular Functions by Endotheliumtargeted-targeted.....
通过内皮细胞靶向改善冠状血管功能......
- 批准号:
8465680 - 财政年份:
- 资助金额:
$ 61.32万 - 项目类别:
Improvement of Coronary Vascular Functions by Endothelium targeted increase in reactive oxygen species
通过内皮靶向增加活性氧来改善冠状血管功能
- 批准号:
8854113 - 财政年份:
- 资助金额:
$ 61.32万 - 项目类别:
Improvement of Coronary Vascular Functions by Endothelium targeted increase in reactive oxygen species
通过内皮靶向增加活性氧来改善冠状血管功能
- 批准号:
9085125 - 财政年份:
- 资助金额:
$ 61.32万 - 项目类别:














{{item.name}}会员




