Molecular profiling of global tissue dynamics at sub cellular resolution
亚细胞分辨率下整体组织动力学的分子分析
基本信息
- 批准号:10706567
- 负责人:
- 金额:$ 33.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAnatomyAtlasesBehaviorBindingBiologicalBlood VesselsCellsCellular MorphologyCellular StructuresCharacteristicsChemicalsCirculationComplexComputer AnalysisComputing MethodologiesConfocal MicroscopyDataDevelopmentDiseaseDisease ProgressionExcisionExplosionFaceGenetic EngineeringGoalsHealthHeartHumanImageImaging technologyImmuneImmunologicsIn VitroInfiltrationIschemiaKnowledgeLengthLeukocytesLinkLiquid substanceMacrophageMapsMeasuresMethodsMicroscopyMiningModelingMolecularMolecular ProfilingMonitorMorphologyMovementMyeloid CellsMyocardial InfarctionNeoplasm MetastasisNucleic AcidsOperative Surgical ProceduresPericytesPharmaceutical PreparationsPharmacodynamicsPhasePhysiologicalPopulationProcessProteinsProteomicsReperfusion InjuryResolutionSamplingStainsStructureSystemTechniquesTechnologyTissue atlasTissue imagingTissuesTranslatingVascular Endothelial Growth FactorsVascular PermeabilitiesVesicleVisualizationbiological systemscancer cellcell behaviorcell communitycell motilitycell typecellular imagingcomputational pipelinescomputational platformdesigngenomic dataimprovedin vivoin vivo imagingintravital microscopymast cellmelanomamigrationmolecular markermolecular subtypesmouse modelmultiplexed imagingneutrophilnew technologynovel strategiesresponsesample fixationsingle-cell RNA sequencingsmall moleculetechnology validationtooltumor
项目摘要
The relationship between structure and function is central to understanding how many biological and
chemical processes operate, across length scales from small molecule chemicals to gross anatomy. Through
an explosion in new technologies, including single-cell RNA sequencing (scRNAseq) and multiplexed tissue
imaging (MTI), tissues can now be visualized with incredible molecular and cellular detail. However, such rich
atlases of tissue structure are typically static snapshots from a fixed sample, and lack important information
about how the tissue actually functions — how cells, fluids, and biomolecules dynamically interact to govern
multicellular behaviors. Our project aims to overcome this limitation by building an integrated computational
and experimental platform for quantitatively linking functional dynamics within tissue to a high-resolution
spatial map of its molecular and cellular composition. As a result, the project aims to produce Molecular
profiling of Tissue Dynamics (MOTID) as a generalizable method that links structure with function in
multicellular communities, designed to be applicable across diverse models, tissue-types, and dynamic
readouts. In this project, we aim for MOTID to be capable of simultaneously monitoring the dynamic
morphology and migration of a substantial fraction all cells within a tissue region, combined with the fluid-
phase movement of particular molecules moving from microvascular circulation through interstitium. Highly
multiplexed imaging of the same tissue, guided by interactive statistical mining of complementary genomic
data, will reveal immunologically-defined cell-type identities that correspond to the observed dynamic
behavior. Thus, MOTID will provide a functional atlas that correlates cellular and fluid dynamics with molecular
markers of cell state. As proof of principle applications upon which to validate the technology, we will
examine dynamic behaviors in a mouse model of ischemia/reperfusion injury in the beating heart, and a
genetically engineered model of malignant melanoma. To accomplish the successful development of MOTID,
this project builds upon our team's expertise and extensive preliminary data in intravital microscopy,
segmentation of single-cell dynamics within live tissues, interpretation of highly multiplexed data, and building
integrated experimental/computational platforms for systems-level analysis.
结构和功能之间的关系对于了解多少生物学和
化学过程在从小分子化学物质到总体解剖结构的长度范围内运作。通过
新技术的爆炸,包括单细胞RNA测序(SCRNASEQ)和多重组织
成像(MTI),现在可以用令人难以置信的分子和细胞细节来可视化组织。但是,如此富有
组织结构的图谱通常是固定样本的静态快照,并且缺乏重要信息
关于组织的实际功能 - 细胞,流体和生物分子如何动态相互作用以控制
多细胞行为。我们的项目旨在通过构建集成的计算来克服这一限制
和实验平台,用于定量将组织中的功能动力学连接到高分辨率
其分子和细胞组成的空间图。结果,该项目旨在产生分子
组织动力学(MOTID)作为一种可推广的方法,将结构与功能联系起来
多细胞社区,旨在适用于潜水员模型,组织类型和动态
读数。在这个项目中,我们的目标是使Motid能够简单地监视动态
在组织区域内所有细胞的大量分数的形态和迁移,并结合流体
特定分子从微血管循环到间质的相位运动。高度
同一组织的多路形成像,以完整基因组的互动统计挖掘为指导
数据将揭示与观察到的动态相对应的免疫学细胞类型身份
行为。那就是Motid将提供一个功能性地图集,将细胞和流体动力学与分子相关
细胞状态的标记。作为验证技术的原则申请的证明,我们将
在跳动心脏中缺血/再灌注损伤的小鼠模型中检查动态行为,
恶性黑色素瘤的基因工程模型。为了完成Motid的成功发展,
该项目基于我们团队的专业知识和插入显微镜的广泛初步数据,
活组织中单细胞动力学的分割,高度多重数据的解释以及构建
用于系统级分析的集成实验/计算平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miles A Miller其他文献
Ocular Effects of MEK Inhibitor Therapy: Literature Review, Clinical Presentation, and Best Practices for Mitigation
MEK 抑制剂治疗的眼部影响:文献综述、临床表现和缓解最佳实践
- DOI:
10.1093/oncolo/oyae014 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Karen W Jeng;Miles A Miller;J. Heier - 通讯作者:
J. Heier
Miles A Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miles A Miller', 18)}}的其他基金
Dissection of in situ myeloid signaling using image-guided synthetic control
使用图像引导合成控制剖析原位骨髓信号传导
- 批准号:
10794433 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 33.29万 - 项目类别: