Imaging-based tumor forecasting to predict brain tumor progression and response to therapy
基于成像的肿瘤预测可预测脑肿瘤进展和治疗反应
基本信息
- 批准号:10706461
- 负责人:
- 金额:$ 64.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAreaBiologicalBiological ProcessBlood VesselsBrainBrain NeoplasmsCalibrationCellularityCharacteristicsClinicalCommunitiesDataDiseaseEvolutionFailureFamilyFutureGeneticGlioblastomaGliomaGoalsHumanHypoxiaImageIndividualInfrastructureInvadedMagnetic Resonance ImagingMalignant neoplasm of brainMathematicsMethodsModelingNecrosisPatient CarePatientsPositioning AttributePrediction of Response to TherapyProliferatingProtocols documentationRadiationRadiation therapyRadiology SpecialtyResolutionSignal PathwayTechniquesTestingTimeTissuesTranslationsTreatment ProtocolsTumor BurdenValidationVisionVisualizationangiogenesischemotherapyclinical applicationcontrast enhancedfluorescence imagingin vivoindividual patientindividual responsemathematical modelneoplastic cellnoveloptical imagingpatient derived xenograft modelpatient responsepre-clinicalpredicting responsepredictive modelingprogramsradiological imagingresponsespatiotemporalstandard of caresuccesstemozolomidetherapy resistanttooltreatment optimizationtreatment responsetumortumor growthtumor heterogeneitytumor progression
项目摘要
The vision for this program is to develop tumor forecasting methods to predict and optimize the response of
glioblastoma multiforme to standard-of-care therapies—and do so on a tumor-specific basis. A fundamental
challenge in the care of patients with brain tumors is the limitation of standard radiographic methods to
accurately evaluate, let alone predict, patient response. We propose to address this shortcoming by developing
predictive, biologically-based mathematical models that incorporate the hallmark characteristics of brain tumor
growth (e.g., tumor induced angiogenesis, hypoxia, necrosis, proliferation, invasion, and resistance to therapy)
that can be initialized using advanced, subject-specific imaging data. This project will address two critical gaps
in the care of patients battling brain cancer. First, our imaging-based, mathematical framework accounts for
subject-specific characteristics and treatment regimens on model predictions. Second, in most studies, the
ground truth used for validation of the predictive model is whether the model can predict future regional
contrast enhancement, despite the well-known limitations of this qualitative MRI feature. Thus, while prior
human studies have demonstrated the potential of predictive modeling, its translation into a realistic radiologic
tool is fundamentally hindered by lack of systematic, pre-clinical validation where critical tumor characteristics
(e.g., tumor heterogeneity and whole brain tumor cell distribution) can be precisely known and rigorously
controlled. To overcome these limitations, we aim to: 1) establish the accuracy of tumor-specific modeling to
predict spatiotemporal progression and 2) establish the accuracy of tumor-specific modeling to predict
therapeutic response. Experimentally, we will construct a family of mathematical models that employ
quantitative MRI data to capture the fundamental biological features of glioblastoma. These data are
longitudinally acquired in patient derived xenografts that are treatment naïve or undergoing radiotherapy and/or
chemotherapy. The model family is then calibrated with these data and a novel model selection strategy is
employed to choose the most parsimonious model for predicting the spatio-temporal evolution of each tumor
which is then compared to MRI data collected at future time points. Model predictions of tumor progression
will be validated via registration to 3D fluorescent images of cleared ex vivo tissue, a technique that enables
visualization of whole brain tumor burden. We will provide the clinical and scientific community with a
validated mathematical description of glioma progression that can reliably predict progression and therapy
response across a range of relevant glioma signaling pathways and can be readily applied to the clinical setting.
该计划的愿景是开发肿瘤预测方法,以预测和优化肿瘤的反应。
多形性胶质母细胞瘤的标准治疗,并在肿瘤特异性的基础上这样做。一项基本
脑肿瘤患者护理中的挑战是标准放射学方法的局限性,
更不用说预测病人的反应了我们建议通过开发
预测性的、基于生物学的数学模型,
生长(例如,肿瘤诱导的血管生成、缺氧、坏死、增殖、侵袭和对治疗的抗性)
可以使用先进的特定对象成像数据进行初始化。该项目将解决两个关键差距
在治疗脑癌患者方面。首先,我们基于成像的数学框架解释了
受试者特异性特征和治疗方案对模型预测的影响。其次,在大多数研究中,
用于验证预测模型的基础事实是该模型是否可以预测未来的区域性
对比度增强,尽管这种定性MRI特征具有众所周知的局限性。因此,虽然先前
人类研究已经证明了预测建模的潜力,其转化为现实的放射学
该工具从根本上受到缺乏系统的临床前验证的阻碍,
(e.g.,肿瘤异质性和全脑肿瘤细胞分布)可以精确地知道并且严格地
控制。为了克服这些局限性,我们的目标是:1)建立肿瘤特异性建模的准确性,
预测时空进展和2)建立肿瘤特异性建模的准确性,以预测
治疗反应。在实验上,我们将构建一系列数学模型,
定量MRI数据来捕获胶质母细胞瘤的基本生物学特征。这些数据
在未经治疗或正在接受放疗的患者来源的异种移植物中纵向获得,和/或
化疗然后用这些数据校准模型族,并提出一种新的模型选择策略。
用于选择最简约的模型来预测每个肿瘤的时空演变
然后将其与在未来时间点收集的MRI数据进行比较。肿瘤进展的模型预测
将通过与已清除的离体组织的3D荧光图像配准进行验证,该技术
全脑肿瘤负荷的可视化。我们将为临床和科学界提供一个
胶质瘤进展的有效数学描述,可以可靠地预测进展和治疗
该方法可以在一系列相关的胶质瘤信号传导途径中产生应答,并且可以容易地应用于临床环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Chad Quarles其他文献
Christopher Chad Quarles的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Chad Quarles', 18)}}的其他基金
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
- 批准号:
10783525 - 财政年份:2023
- 资助金额:
$ 64.7万 - 项目类别:
Imaging-based tumor forecasting to predict brain tumor progression and response to therapy
基于成像的肿瘤预测可预测脑肿瘤进展和治疗反应
- 批准号:
10367617 - 财政年份:2022
- 资助金额:
$ 64.7万 - 项目类别:
Relaxivity Contrast Imaging as Biomarker of Muscle Degeneration in ALS
弛豫对比成像作为 ALS 肌肉退化的生物标志物
- 批准号:
10357431 - 财政年份:2021
- 资助金额:
$ 64.7万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 64.7万 - 项目类别:
Establishing the validity of brain tumor perfusion imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
9754786 - 财政年份:2017
- 资助金额:
$ 64.7万 - 项目类别:
Establishing the Validity of Brain Tumor Perfusion Imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
10734997 - 财政年份:2017
- 资助金额:
$ 64.7万 - 项目类别:
Establishing the validity of brain tumor perfusion imaging
建立脑肿瘤灌注成像的有效性
- 批准号:
10373105 - 财政年份:2017
- 资助金额:
$ 64.7万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
9182174 - 财政年份:2011
- 资助金额:
$ 64.7万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
8703037 - 财政年份:2011
- 资助金额:
$ 64.7万 - 项目类别:
MRI Assessment of Tumor Perfusion, Permeability and Cellularity
肿瘤灌注、渗透性和细胞结构的 MRI 评估
- 批准号:
10062866 - 财政年份:2011
- 资助金额:
$ 64.7万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 64.7万 - 项目类别:
Research Grant