Multivariate spatiotemporal models to quantify disparities in COVID-19 health outcomes
用于量化 COVID-19 健康结果差异的多元时空模型
基本信息
- 批准号:10706489
- 负责人:
- 金额:$ 18.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAffectAreaBinomial ModelCOVID-19COVID-19 disparityCOVID-19 pandemicCessation of lifeCodeColorCommunitiesComputer softwareCountyDataDependenceDevelopmentDiseaseDisease OutbreaksDisparityEquilibriumExhibitsExposure toGeographic LocationsGoalsHealthHealth Disparities ResearchHealth systemHealthcareHealthcare SystemsHospitalizationIncidenceIndividualInfectionJointsMethodsModelingNational Institute on Minority Health and Health DisparitiesOutcomePlayPolicy MakerPublic HealthResearchResource AllocationRoleSARS-CoV-2 infectionSamplingStatistical MethodsTestingTimeTime trendUpdateVaccinationVaccinesVulnerable PopulationsWorkeconomic disparityflexibilityhealth equity promotionhealth inequalitieshigh dimensionalityinfection ratelong-standing disparitieslow socioeconomic statusminority healthneighborhood disadvantagenovelpandemic diseasepeople of colorresponsesocialsocial vulnerabilityspatiotemporaltooltrenduser-friendlyvulnerable community
项目摘要
PROJECT SUMMARY
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019
(COVID-19), has created a global public health crisis since its onset in late 2019. Although the pandemic has
affected all communities, recent work suggests that socially vulnerable populations have been disproportionately
impacted by the disease. Mounting evidence has found that the pandemic disproportionately affects people of
color, older individuals, and those of lower socioeconomic status. To date, however, there has been no
comprehensive spatiotemporal analysis of the relationship between social vulnerability and COVID-19 outcomes
at a national scale and over an extended period of time, in part because the statistical tools needed for such an
analysis are lacking. The objective of the proposal is to develop multivariate models to identify spatiotemporal
trends in correlated count outcomes, and to use these models to quantify disparities in COVID-19 infection,
death, testing, hospitalizations, and vaccinations across socially vulnerable communities. Aim 1 proposes a
Bayesian multivariate spatiotemporal model to quantify disparities in COVID-19 infection, death, testing,
hospitalization, and vaccination rates over time across US counties. Social vulnerability exposures are
incorporated into the model in a nonlinear and interactive manner through a novel multivariate kernel machine
regression. Aim 2 extends the method to the zero inflated setting by developing a Bayesian multivariate zero-
inflated negative binomial model to quantify disparities in COVID-19 trends over time and across counties. Aim
3 develops computationally scalable Bayesian software for implementation of the methods. The pandemic has
caused enduring disruptions to the health care system that will disproportionately impact vulnerable populations
for years to come. The statistical methods developed here will play a critical role in promoting health equity and
mitigating long-standing disparities exacerbated by the pandemic.
项目摘要
严重急性呼吸综合征冠状病毒2(SARS-CoV-2),2019年冠状病毒疾病的原因
自2019年底爆发以来,新冠肺炎疫情已造成全球公共卫生危机。虽然大流行病
最近的工作表明,社会弱势群体受到不成比例的影响,
受到疾病的影响。越来越多的证据表明,这一流行病不成比例地影响到
肤色,年龄较大的人,以及社会经济地位较低的人。然而,迄今为止,
社会脆弱性与COVID-19结果之间关系的全面时空分析
在一个国家范围内,并在一段较长的时间内,部分原因是这样的统计工具所需的
缺乏分析。该提案的目的是开发多变量模型,以确定时空
相关计数结果的趋势,并使用这些模型来量化COVID-19感染的差异,
死亡、检测、住院和接种疫苗。目标1提出了一个
贝叶斯多变量时空模型,以量化COVID-19感染,死亡,检测,
住院率,以及美国各县随时间的疫苗接种率。社会脆弱性风险是
通过一种新的多变量核机器以非线性和交互的方式并入模型
回归分析目标2通过开发贝叶斯多变量零膨胀设置扩展该方法,
膨胀负二项模型,以量化COVID-19趋势随时间和各县的差异。目的
3开发了计算上可扩展的贝叶斯软件,用于实现这些方法。这一大流行病已
对卫生保健系统造成了持久的破坏,这将对弱势群体造成不成比例的影响。
在未来的几年里。在此制定的统计方法将在促进卫生公平方面发挥关键作用,
减轻因这一流行病而加剧的长期差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Neelon其他文献
Brian Neelon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Neelon', 18)}}的其他基金
Multivariate spatiotemporal models to quantify disparities in COVID-19 health outcomes
用于量化 COVID-19 健康结果差异的多元时空模型
- 批准号:
10527208 - 财政年份:2022
- 资助金额:
$ 18.55万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.55万 - 项目类别:
Research Grant