Electronic Health Record Phenotyping for Case Detection and Prediction of Emergency Department Visits for Child and Adolescent Suicide Attempts

用于病例检测和预测儿童和青少年自杀未遂急诊科就诊的电子健康记录表型

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT The candidate requests support for a five-year program of training and research to better understand how electronic health record phenotyping and other computational methods applied to existing medical record data can bolster detection and prediction of suicide attempts by children ages 10 to 17. In the proposed training plan, the candidate will build upon her previous experiences in social psychology, clinical informatics, and clinical child and adolescent psychiatry to perform a multidisciplinary project at the University of California, Los Angeles Health System. Her training plan includes developing skills and knowledge in 1) analysis of natural language (text) data, 2) development of risk algorithms in healthcare settings to improve suicide prevention, 3) basic qualitative research skills including modified Delphi Panel approach, and 4) the responsible conduct of research. Suicide is the second leading cause of death of young people over 10 years old in the United States and suicide attempts among children are common, costly and preventable. There is an urgent need to close the gap between risk prediction algorithms and clinically-useable tools that can enhance medical decision- making for providers and families. This study proposes that electronic health record phenotyping, a method of standardizing case detection using clinical note text and structured medical record data, may offer improved detection and personalized risk prediction for children, thus complementing existing suicide prevention efforts. In the proposed research, using a cross-sectional design, Aim 1 will focus on adaptation of electronic health record phenotyping to detect emergency department visits for suicide attempts by children using electronic health records. Then, using a case-control design, Aim 2 will focus on development of risk prediction models of emergency department visits for suicide attempts by children using longitudinal electronic health records over two years. Aim 3 will focus on assessment of the validity, acceptability, usability, feasibility, and overall utility of a personalized risk prediction prototype with case simulations using a modified Delphi panel approach. This plan will parallel a training plan building skills and knowledge to bridge informatics, computational methods, and clinical child psychiatry. In the long term, this research is an initial step to enhance signal detection and support prediction of suicide attempts, in turn, setting the stage for deployment of personalized approaches to prevention in clinical settings where providers, youth, and families may directly benefit.
项目总结/摘要 候选人要求支持一个为期五年的培训和研究计划,以更好地了解如何 电子健康记录表型分析和应用于现有医疗记录数据的其它计算方法 可以加强对10至17岁儿童自杀企图的检测和预测。在拟议的培训中, 计划,候选人将建立在她在社会心理学,临床信息学, 临床儿童和青少年精神病学在洛杉矶加州大学进行一个多学科项目 洛杉矶卫生系统她的培训计划包括发展分析自然环境的技能和知识, 语言(文本)数据,2)在医疗保健环境中开发风险算法,以改善自杀预防,3) 基本的定性研究技能,包括修改后的德尔菲小组方法,以及4)负责任的行为, research.自杀是美国10岁以上青少年死亡的第二大原因 儿童自杀未遂是常见的,代价高昂,但可以预防。迫切需要关闭 风险预测算法和临床可用工具之间的差距,可以增强医疗决策- 为供应商和家庭。这项研究提出,电子健康记录表型,一种方法, 使用临床笔记文本和结构化医疗记录数据来标准化病例检测可以提供改进的 为儿童提供检测和个性化风险预测,从而补充现有的自杀预防工作。 在拟议的研究中,使用横截面设计,目标1将侧重于电子健康的适应 记录表型,以检测急诊室就诊的自杀企图的儿童使用电子 健康记录。然后,使用病例对照设计,目标2将侧重于开发风险预测模型, 使用纵向电子健康记录的儿童自杀未遂的急诊室就诊, 两年目标3将侧重于评估的有效性,可接受性,可用性,可行性和整体效用, 一个个性化的风险预测原型与案例模拟使用修改后的德尔菲面板方法。这 计划将与培训计划并行,培养技能和知识,以连接信息学,计算方法, 和临床儿童精神病学从长远来看,这项研究是加强信号检测和 支持自杀企图的预测,反过来,为部署个性化的方法, 在临床环境中预防,提供者,青年和家庭可能直接受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juliet Beni Edgcomb其他文献

Juliet Beni Edgcomb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juliet Beni Edgcomb', 18)}}的其他基金

Electronic Health Record Phenotyping for Case Detection and Prediction of Emergency Department Visits for Child and Adolescent Suicide Attempts
用于病例检测和预测儿童和青少年自杀未遂急诊科就诊的电子健康记录表型
  • 批准号:
    10507372
  • 财政年份:
    2022
  • 资助金额:
    $ 19.74万
  • 项目类别:

相似海外基金

Effects of Phthalate Exposure on the Hand Digit (2D4D) Ratio, Puberty Onset and Its Underlying Mechanism in 14- to 17-Year-Old Children
邻苯二甲酸盐暴露对 14 至 17 岁儿童手部数字 (2D4D) 比例、青春期开始及其潜在机制的影响
  • 批准号:
    23K19884
  • 财政年份:
    2023
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Refurbishment of a 17-Year Old E-Beam Evaporator System
翻新已有 17 年历史的电子束蒸发器系统
  • 批准号:
    RTI-2019-00527
  • 财政年份:
    2018
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Research Tools and Instruments
PERIODONTAL HEALTH OF 14-17 YEAR OLD SCHOOL CHILDREN--U.S. 1986-87
14-17 岁学童的牙周健康——美国
  • 批准号:
    3875259
  • 财政年份:
  • 资助金额:
    $ 19.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了