Analysis of LC-MS data to identify peptide and glycan biomarkers for hepatocellul
分析 LC-MS 数据以鉴定肝细胞的肽和聚糖生物标志物
基本信息
- 批准号:7899433
- 负责人:
- 金额:$ 28.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressBehaviorBiochemistryBioinformaticsBiologicalBiological AssayBiological MarkersBiometryBlood specimenChronicCirrhosisCollaborationsCommunitiesComplexComputer softwareComputing MethodologiesCoupledDataDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease ManagementEarly DiagnosisEgyptEnsureExhibitsFibrosisGoalsHealthHeterogeneityHumanIndividualIsotopesKnowledgeLabelLeadLiver diseasesMachine LearningMalignant NeoplasmsMapsMass Spectrum AnalysisMethodsMetricMichiganModelingMolecular ProfilingNewly DiagnosedPatientsPatternPeptidesPerformancePlasmaPolysaccharidesPopulationPrimary carcinoma of the liver cellsProcessProteinsRecruitment ActivityResearchRunningSamplingScreening for cancerScreening procedureSerumSolutionsSourceStagingSubgroupSystemTechnologyTestingUnited StatesUniversitiesUniversity HospitalsWorkanalytical toolbasecomparativedesigndisease classificationdisorder controlhigh riskimprovedinstrumentliquid chromatography mass spectrometrymass spectrometermultiple reaction monitoringnovelopen sourcepatient populationpublic health relevancesample collectionstemsynthetic peptidetooltreatment strategy
项目摘要
DESCRIPTION (provided by applicant): Early detection of cancer improves patient survival. Characterizing the association of peptides and glycans with cancer is one of the most promising strategies to discover early-diagnosis cancer biomarkers. This study evaluates peptide and glycan expression profiles in the progression of chronic liver disease (CLD) to hepatocellular carcinoma (HCC) by using the liquid chromatography-mass spectrometry (LC-MS) technology. The goal is to find and validate peptide and glycan biomarkers for detection of HCC at a treatable stage in a high-risk population of patients with CLD. Label-free LC-MS quantification allows comparison of peptides and glycans with good throughput which allows us to compare a large population of patients. However, such quantification is not addressed adequately in the instrument-specific software packages. In particular, alignment and normalization of LC-MS data present a significant challenge in label-free quantification and comparison of biomolecules. This challenge coupled with biological variability and disease heterogeneity in human populations has restricted recent advances in LC-MS-based biomarker discovery studies. This project brings together experts in bioinformatics, biostatistics, biochemistry, and mass spectrometry to develop a suite of novel analytical tools for LC-MS-based label-free quantification and comparison of peptides and glycans in serum and plasma. Specifically, a novel Bayesian hierarchical model will be investigated for simultaneous alignment and normalization of LC-MS data and for identification of patient subgroups. The Bayesian framework involves fixed and random effects to account for subpopulation homogeneous behavior (fixed systematic changes), while allowing for modeling heterogeneity within a group (random effects). A spike-in study will be conducted to obtain replicate LC-MS runs with known peptide and glycan concentrations. The data will be utilized to develop and optimize the proposed Bayesian framework and to compare its performance with other existing solutions. The optimized framework and a machine learning-based feature selection method will be applied to identify an integrated set of peptide and glycan candidate biomarkers for early detection of HCC. LC-MS analysis of integrated peptides and glycans in both serum and plasma of patients with HCC is to our knowledge unprecedented. Blood samples from patients with HCC and CLD controls in Egypt and United States will be used. The biomarkers will be validated using isotope dilution mass spectrometric assays.
PUBLIC HEALTH RELEVANCE: This project will lead to the development of a suite of novel open source analytical tools for label-free quantification of peptides and glycans in serum and plasma using liquid chromatography-mass spectrometry (LC-MS) technologies. The availability of such tools will assist the research community in advancing the promising LC-MS-based biomarker discovery research. The proposed tools will be utilized to find and validate early-diagnosis biomarkers of hepatocellular carcinoma (HCC). Defining clinically applicable biomarkers that detect early-stage HCC in a high-risk population of patients with chronic liver disease has potentially far-reaching consequences for disease management and patient health. This project is important because most HCC patients are diagnosed at a late stage, where the treatment options are limited. There is a pressing need to identify biomarkers of HCC that could be used for early detection and more accurate classification of disease. In addition to screening high-risk populations for early signs of disease, the resulting biomarkers could be used to design and test improved treatment strategies.
描述(由申请人提供):癌症的早期检测可提高患者的生存率。表征肽和聚糖与癌症的关联是发现早期诊断癌症生物标志物的最有前途的策略之一。本研究采用液相色谱-质谱联用技术(LC-MS)对慢性肝病(CLD)发展为肝细胞癌(HCC)过程中的肽和聚糖表达谱进行了评估。目的是寻找和验证肽和聚糖生物标志物,用于在CLD患者的高风险人群中检测可治疗阶段的HCC。无标记LC-MS定量允许以良好的通量比较肽和聚糖,这使我们能够比较大量患者。然而,这种量化在仪器专用软件包中没有得到充分解决。特别是,LC-MS数据的比对和标准化在生物分子的无标记定量和比较中提出了重大挑战。这一挑战加上人类群体中的生物变异性和疾病异质性限制了基于LC-MS的生物标志物发现研究的最新进展。该项目汇集了生物信息学、生物统计学、生物化学和质谱学方面的专家,开发了一套新的分析工具,用于血清和血浆中肽和聚糖的基于LC-MS的无标记定量和比较。具体而言,将研究一种新的贝叶斯分层模型,用于LC-MS数据的同步比对和标准化以及患者亚组的识别。贝叶斯框架涉及固定和随机效应,以解释亚群同质行为(固定系统变化),同时允许对组内异质性(随机效应)进行建模。将进行加标研究,以获得具有已知肽和聚糖浓度的重复LC-MS运行。这些数据将用于开发和优化拟议的贝叶斯框架,并将其性能与其他现有解决方案进行比较。优化的框架和基于机器学习的特征选择方法将被应用于识别用于早期检测HCC的肽和聚糖候选生物标志物的集成集合。据我们所知,HCC患者血清和血浆中整合肽和聚糖的LC-MS分析是前所未有的。将使用来自埃及和美国HCC患者和CLD对照的血液样本。将使用同位素稀释质谱测定法对生物标志物进行验证。
公共卫生相关性:该项目将开发一套新型开源分析工具,用于使用液相色谱-质谱(LC-MS)技术对血清和血浆中的肽和聚糖进行无标记定量。这些工具的可用性将有助于研究界推进有前途的基于LC-MS的生物标志物发现研究。所提出的工具将用于寻找和验证肝细胞癌(HCC)的早期诊断生物标志物。定义临床适用的生物标志物,检测慢性肝病患者高危人群中的早期HCC,对疾病管理和患者健康具有潜在的深远影响。这个项目很重要,因为大多数HCC患者都是在晚期被诊断出来的,治疗选择有限。目前迫切需要鉴定HCC的生物标志物,以用于早期检测和更准确的疾病分类。除了筛查高风险人群的早期疾病迹象外,由此产生的生物标志物可用于设计和测试改进的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Habtom W Ressom其他文献
Habtom W Ressom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Habtom W Ressom', 18)}}的其他基金
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10705675 - 财政年份:2021
- 资助金额:
$ 28.67万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10491700 - 财政年份:2021
- 资助金额:
$ 28.67万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10581892 - 财政年份:2021
- 资助金额:
$ 28.67万 - 项目类别:
Systems Metabolomics for Biomarker Discovery
用于生物标志物发现的系统代谢组学
- 批准号:
10206465 - 财政年份:2021
- 资助金额:
$ 28.67万 - 项目类别:
Systems Metabolomics for HCC Biomarker Discovery
HCC 生物标志物发现的系统代谢组学
- 批准号:
9894874 - 财政年份:2017
- 资助金额:
$ 28.67万 - 项目类别:
Integrative Analysis of GC-MS and LC-MS Data for Biomarker Discovery
GC-MS 和 LC-MS 数据综合分析以发现生物标志物
- 批准号:
10393981 - 财政年份:2017
- 资助金额:
$ 28.67万 - 项目类别:
New Tools for Metabolite Identification and Quantitation
代谢物鉴定和定量的新工具
- 批准号:
9430743 - 财政年份:2017
- 资助金额:
$ 28.67万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9115112 - 财政年份:2015
- 资助金额:
$ 28.67万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9302701 - 财政年份:2015
- 资助金额:
$ 28.67万 - 项目类别:
Analysis of Racial Disparities in HCC by Systems Metabolomics
通过系统代谢组学分析 HCC 的种族差异
- 批准号:
9267193 - 财政年份:2015
- 资助金额:
$ 28.67万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 28.67万 - 项目类别:
Research Grant